IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp538-551.html
   My bibliography  Save this article

Numerical investigation about the improvement of the thermal potential of an Earth-Air Heat Exchanger (EAHE) employing the Constructal Design method

Author

Listed:
  • Kepes Rodrigues, Michel
  • da Silva Brum, Ruth
  • Vaz, Joaquim
  • Oliveira Rocha, Luiz Alberto
  • Domingues dos Santos, Elizaldo
  • Isoldi, Liércio André

Abstract

The Earth-Air Heat Exchanger (EAHE) is a device used to improve the thermal condition of built environments, allowing the reduction of electrical energy consumption of traditional air conditioner systems. Fundamentally, its operational principle is based on fluid mechanics and heat transfer, areas in which Constructal Design has been widely used to seek for the optimal geometries, i.e., which leads to the best performances. In spite of this fact, the employment of Constructal Design for improvement of the EAHE thermal potential has not been performed into literature. Therefore, the main purpose of this work is to perform a numerical investigation on different geometrical configurations of an EAHE using the Constructal Design to obtain the highest thermal potential. Results indicated that, for the same area occupied by the ducts and fixed mass flow rate of air, the increase of the number of ducts (complexity of geometry) improved the EAHE thermal performance up to approximately 73% for cooling and 115% for heating.

Suggested Citation

  • Kepes Rodrigues, Michel & da Silva Brum, Ruth & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2015. "Numerical investigation about the improvement of the thermal potential of an Earth-Air Heat Exchanger (EAHE) employing the Constructal Design method," Renewable Energy, Elsevier, vol. 80(C), pages 538-551.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:538-551
    DOI: 10.1016/j.renene.2015.02.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santamouris, M. & Mihalakakou, G. & Balaras, C.A. & Lewis, J.O. & Vallindras, M. & Argiriou, A., 1996. "Energy conservation in greenhouses with buried pipes," Energy, Elsevier, vol. 21(5), pages 353-360.
    2. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    3. Ascione, Fabrizio & Bellia, Laura & Minichiello, Francesco, 2011. "Earth-to-air heat exchangers for Italian climates," Renewable Energy, Elsevier, vol. 36(8), pages 2177-2188.
    4. Chiesa, Giacomo & Simonetti, Marco & Grosso, Mario, 2014. "A 3-field earth-heat-exchange system for a school building in Imola, Italy: Monitoring results," Renewable Energy, Elsevier, vol. 62(C), pages 563-570.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Xiangkui & Xiao, Yimin & Gao, Penghui, 2022. "Thermal potential improvement of an earth-air heat exchanger (EAHE) by employing backfilling for deep underground emergency ventilation," Energy, Elsevier, vol. 250(C).
    2. Barakat, S. & Ramzy, Ahmed & Hamed, A.M. & El-Emam, S.H., 2019. "Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System," Energy, Elsevier, vol. 189(C).
    3. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    4. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    5. Rodrigues, Michel Kepes & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2022. "A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation," Renewable Energy, Elsevier, vol. 191(C), pages 535-556.
    6. Brum, Ruth S. & Ramalho, Jairo V.A. & Rodrigues, Michel K. & Rocha, Luiz A.O. & Isoldi, Liércio A. & Dos Santos, Elizaldo D., 2019. "Design evaluation of Earth-Air Heat Exchangers with multiple ducts," Renewable Energy, Elsevier, vol. 135(C), pages 1371-1385.
    7. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    8. Martins, J.C. & Goulart, M.M. & Gomes, M. das N. & Souza, J.A. & Rocha, L.A.O. & Isoldi, L.A. & dos Santos, E.D., 2018. "Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design," Renewable Energy, Elsevier, vol. 118(C), pages 727-741.
    9. Aldona Skotnicka-Siepsiak, 2020. "Operation of a Tube GAHE in Northeastern Poland in Spring and Summer—A Comparison of Real-World Data with Mathematically Modeled Data," Energies, MDPI, vol. 13(7), pages 1-15, April.
    10. Paludetto, Delphine & Lorente, Sylvie, 2016. "Modeling the heat exchanges between a datacenter and neighboring buildings through an underground loop," Renewable Energy, Elsevier, vol. 93(C), pages 502-509.
    11. Huijun Feng & Wei Tang & Lingen Chen & Junchao Shi & Zhixiang Wu, 2021. "Multi-Objective Constructal Optimization for Marine Condensers," Energies, MDPI, vol. 14(17), pages 1-18, September.
    12. Maoz & Saddam Ali & Noor Muhammad & Ahmad Amin & Mohammad Sohaib & Abdul Basit & Tanvir Ahmad, 2019. "Parametric Optimization of Earth to Air Heat Exchanger Using Response Surface Method," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    13. Amanowicz, Łukasz & Wojtkowiak, Janusz, 2020. "Approximated flow characteristics of multi-pipe earth-to-air heat exchangers for thermal analysis under variable airflow conditions," Renewable Energy, Elsevier, vol. 158(C), pages 585-597.
    14. Vieira, R.S. & Petry, A.P. & Rocha, L.A.O. & Isoldi, L.A. & dos Santos, E.D., 2017. "Numerical evaluation of a solar chimney geometry for different ground temperatures by means of constructal design," Renewable Energy, Elsevier, vol. 109(C), pages 222-234.
    15. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    3. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    4. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    5. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    6. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    7. Leandra Vanbaelinghem & Andrea Costantino & Florian Grassauer & Nathan Pelletier, 2024. "Alternative Heating, Ventilation, and Air Conditioning (HVAC) System Considerations for Reducing Energy Use and Emissions in Egg Industries in Temperate and Continental Climates: A Systematic Review o," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    8. Yusof, T.M. & Ibrahim, H. & Azmi, W.H. & Rejab, M.R.M., 2018. "The thermal characteristics and performance of a ground heat exchanger for tropical climates," Renewable Energy, Elsevier, vol. 121(C), pages 528-538.
    9. Rodrigues, Michel Kepes & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2022. "A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation," Renewable Energy, Elsevier, vol. 191(C), pages 535-556.
    10. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    11. Kappler, Genyr & Dias, João Batista & Haeberle, Fernanda & Wander, Paulo Roberto & Moraes, Carlos Alberto Mendes & Modolo, Regina Célia Espinosa, 2019. "Study of an earth-to-water heat exchange system which relies on underground water tanks," Renewable Energy, Elsevier, vol. 133(C), pages 1236-1246.
    12. Taurines, Kevin & Giroux-Julien, Stéphanie & Farid, Mohammed & Ménézo, Christophe, 2021. "Numerical modelling of a building integrated earth-to-air heat exchanger," Applied Energy, Elsevier, vol. 296(C).
    13. Gomat, Landry Jean Pierre & Elombo Motoula, Smaël Magloire & M’Passi-Mabiala, Bernard, 2020. "An analytical method to evaluate the impact of vertical part of an earth-air heat exchanger on the whole system," Renewable Energy, Elsevier, vol. 162(C), pages 1005-1016.
    14. Badescu, Viorel, 2007. "Simple and accurate model for the ground heat exchanger of a passive house," Renewable Energy, Elsevier, vol. 32(5), pages 845-855.
    15. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    16. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    17. Tang, Fujiao & Nowamooz, Hossein, 2018. "Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region," Renewable Energy, Elsevier, vol. 128(PA), pages 210-222.
    18. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    19. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    20. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:538-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.