IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v21y1996i5p353-360.html
   My bibliography  Save this article

Energy conservation in greenhouses with buried pipes

Author

Listed:
  • Santamouris, M.
  • Mihalakakou, G.
  • Balaras, C.A.
  • Lewis, J.O.
  • Vallindras, M.
  • Argiriou, A.

Abstract

The use of buried pipes reduces the energy consumption for heating of agricultural greenhouses by increasing the air temperature and also improves indoor conditions by reducing temperature fluctuations during the day. A parametric analysis has been performed for a typical glass greenhouse to illustrate overall system performance. The greenhouse-air temperature increases during the winter with increasing pipe length, decreasing pipe diameter, increasing depth up to 4 m, and decreasing air velocity inside the pipes. Measured data from a 1000-m2 fibreglass greenhouse with four buried pipes are found to be in good agreement with calculated values.

Suggested Citation

  • Santamouris, M. & Mihalakakou, G. & Balaras, C.A. & Lewis, J.O. & Vallindras, M. & Argiriou, A., 1996. "Energy conservation in greenhouses with buried pipes," Energy, Elsevier, vol. 21(5), pages 353-360.
  • Handle: RePEc:eee:energy:v:21:y:1996:i:5:p:353-360
    DOI: 10.1016/0360-5442(95)00121-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544295001212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(95)00121-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agrawal, Kamal Kumar & Misra, Rohit & Agrawal, Ghanshyam Das, 2020. "To study the effect of different parameters on the thermal performance of ground-air heat exchanger system: In situ measurement," Renewable Energy, Elsevier, vol. 146(C), pages 2070-2083.
    2. Kepes Rodrigues, Michel & da Silva Brum, Ruth & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2015. "Numerical investigation about the improvement of the thermal potential of an Earth-Air Heat Exchanger (EAHE) employing the Constructal Design method," Renewable Energy, Elsevier, vol. 80(C), pages 538-551.
    3. Badescu, Viorel, 2007. "Simple and accurate model for the ground heat exchanger of a passive house," Renewable Energy, Elsevier, vol. 32(5), pages 845-855.
    4. Bouadila, Salwa & Lazaar, Mariem & Skouri, Safa & Kooli, Sami & Farhat, Abdelhamid, 2014. "Assessment of the greenhouse climate with a new packed-bed solar air heater at night, in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 31-41.
    5. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    6. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    7. Agrawal, Kamal Kumar & Misra, Rohit & Agrawal, Ghanshyam Das, 2020. "Improving the thermal performance of ground air heat exchanger system using sand-bentonite (in dry and wet condition) as backfilling material," Renewable Energy, Elsevier, vol. 146(C), pages 2008-2023.
    8. Singh, R.D. & Tiwari, G.N., 2010. "Energy conservation in the greenhouse system: A steady state analysis," Energy, Elsevier, vol. 35(6), pages 2367-2373.
    9. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Tiwari, G.N. & Akhtar, M.A. & Shukla, Ashish & Emran Khan, M., 2006. "Annual thermal performance of greenhouse with an earth–air heat exchanger: An experimental validation," Renewable Energy, Elsevier, vol. 31(15), pages 2432-2446.
    11. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    12. Bazgaou, A. & Fatnassi, H. & Bouharroud, R. & Ezzaeri, K. & Gourdo, L. & Wifaya, A. & Demrati, H. & Elame, F. & Carreño-Ortega, Á. & Bekkaoui, A. & Aharoune, A. & Bouirden, L., 2021. "Effect of active solar heating system on microclimate, development, yield and fruit quality in greenhouse tomato production," Renewable Energy, Elsevier, vol. 165(P1), pages 237-250.
    13. Sara Bonuso & Simone Panico & Cristina Baglivo & Domenico Mazzeo & Nicoletta Matera & Paolo Maria Congedo & Giuseppe Oliveti, 2020. "Dynamic Analysis of the Natural and Mechanical Ventilation of a Solar Greenhouse by Coupling Controlled Mechanical Ventilation (CMV) with an Earth-to-Air Heat Exchanger (EAHX)," Energies, MDPI, vol. 13(14), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:21:y:1996:i:5:p:353-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.