IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v158y2020icp585-597.html
   My bibliography  Save this article

Approximated flow characteristics of multi-pipe earth-to-air heat exchangers for thermal analysis under variable airflow conditions

Author

Listed:
  • Amanowicz, Łukasz
  • Wojtkowiak, Janusz

Abstract

The design process of multi-pipe earth-to-air heat exchangers requires mainly two considerations: the calculations of (i) thermal and (ii) flow performance. The influence of non-uniform airflow distribution among branch-pipes on the thermal performance is usually neglected, although it does occur in multi-pipe structures. In order to bridge this knowledge gap, in this paper, the formulas which enable calculation of an exchanger’s total pressure losses and individual branch-pipe airflows as a function of total airflow are presented. The results show that pressure losses for 45° structures can be up to 30% lower than those for 90° structures, and the maximum airflow in a single branch-pipe can be more than 10 times higher than the minimum airflow measured in another branch-pipe. To demonstrate the influence of the non-uniform airflow distribution between parallel branch-pipes on the heat exchanger’s thermal performance, an example analysis was carried out. The results show that heat and cool gains calculated over one year for real airflows (derived from the approximated flow characteristics of the exchangers presented in this paper) can be up to 20% lower than the maximum possible gains calculated assuming ideally uniform airflow distribution between parallel branch-pipes.

Suggested Citation

  • Amanowicz, Łukasz & Wojtkowiak, Janusz, 2020. "Approximated flow characteristics of multi-pipe earth-to-air heat exchangers for thermal analysis under variable airflow conditions," Renewable Energy, Elsevier, vol. 158(C), pages 585-597.
  • Handle: RePEc:eee:renene:v:158:y:2020:i:c:p:585-597
    DOI: 10.1016/j.renene.2020.05.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    2. Kepes Rodrigues, Michel & da Silva Brum, Ruth & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2015. "Numerical investigation about the improvement of the thermal potential of an Earth-Air Heat Exchanger (EAHE) employing the Constructal Design method," Renewable Energy, Elsevier, vol. 80(C), pages 538-551.
    3. Gan, Guohui, 2017. "Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings," Renewable Energy, Elsevier, vol. 103(C), pages 361-371.
    4. Bansal, Vikas & Misra, Rohit & Agarwal, Ghanshyam Das & Mathur, Jyotirmay, 2013. "‘Derating Factor’ new concept for evaluating thermal performance of earth air tunnel heat exchanger: A transient CFD analysis," Applied Energy, Elsevier, vol. 102(C), pages 418-426.
    5. Gan, Guohui, 2015. "Simulation of dynamic interactions of the earth–air heat exchanger with soil and atmosphere for preheating of ventilation air," Applied Energy, Elsevier, vol. 158(C), pages 118-132.
    6. Zukowski, Mroslaw & Topolanska, Justyna, 2018. "Comparison of thermal performance between tube and plate ground-air heat exchangers," Renewable Energy, Elsevier, vol. 115(C), pages 697-710.
    7. Amanowicz, Łukasz, 2018. "Influence of geometrical parameters on the flow characteristics of multi-pipe earth-to-air heat exchangers – experimental and CFD investigations," Applied Energy, Elsevier, vol. 226(C), pages 849-861.
    8. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    9. Hollmuller, Pierre & Lachal, Bernard, 2014. "Air–soil heat exchangers for heating and cooling of buildings: Design guidelines, potentials and constraints, system integration and global energy balance," Applied Energy, Elsevier, vol. 119(C), pages 476-487.
    10. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    11. Badescu, Viorel & Isvoranu, Dragos, 2011. "Pneumatic and thermal design procedure and analysis of earth-to-air heat exchangers of registry type," Applied Energy, Elsevier, vol. 88(4), pages 1266-1280, April.
    12. Brum, Ruth S. & Ramalho, Jairo V.A. & Rodrigues, Michel K. & Rocha, Luiz A.O. & Isoldi, Liércio A. & Dos Santos, Elizaldo D., 2019. "Design evaluation of Earth-Air Heat Exchangers with multiple ducts," Renewable Energy, Elsevier, vol. 135(C), pages 1371-1385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Haibin & Yang, Dong & Du, Jinhui & Guo, Xin, 2021. "Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region," Renewable Energy, Elsevier, vol. 167(C), pages 530-541.
    2. Piotr Michalak, 2022. "Hourly Simulation of an Earth-to-Air Heat Exchanger in a Low-Energy Residential Building," Energies, MDPI, vol. 15(5), pages 1-23, March.
    3. Liu, Zhengxuan & Sun, Pengchen & Xie, Mingjing & Zhou, Yuekuan & He, Yingdong & Zhang, Guoqiang & Chen, Dachuan & Li, Shuisheng & Yan, Zhongjun & Qin, Di, 2021. "Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method," Renewable Energy, Elsevier, vol. 173(C), pages 401-414.
    4. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    5. Łukasz Amanowicz & Janusz Wojtkowiak, 2021. "Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe," Energies, MDPI, vol. 14(24), pages 1-28, December.
    6. Chong Zhang & Jinbo Wang & Liao Li & Feifei Wang & Wenjie Gang, 2020. "Utilization of Earth-to-Air Heat Exchanger to Pre-Cool/Heat Ventilation Air and Its Annual Energy Performance Evaluation: A Case Study," Sustainability, MDPI, vol. 12(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H.Ali, Mohammed & Kurjak, Zoltan & Beke, Janos, 2023. "Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink," Renewable Energy, Elsevier, vol. 209(C), pages 632-643.
    2. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    3. Amanowicz, Łukasz, 2018. "Influence of geometrical parameters on the flow characteristics of multi-pipe earth-to-air heat exchangers – experimental and CFD investigations," Applied Energy, Elsevier, vol. 226(C), pages 849-861.
    4. Taurines, Kevin & Giroux-Julien, Stéphanie & Farid, Mohammed & Ménézo, Christophe, 2021. "Numerical modelling of a building integrated earth-to-air heat exchanger," Applied Energy, Elsevier, vol. 296(C).
    5. Bordoloi, Namrata & Sharma, Aashish & Nautiyal, Himanshu & Goel, Varun, 2018. "An intense review on the latest advancements of Earth Air Heat Exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 261-280.
    6. Wei, Haibin & Yang, Dong & Wang, Jilibo & Du, Jinhui, 2020. "Field experiments on the cooling capability of earth-to-air heat exchangers in hot and humid climate," Applied Energy, Elsevier, vol. 276(C).
    7. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    8. Rodrigues, Michel Kepes & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2022. "A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation," Renewable Energy, Elsevier, vol. 191(C), pages 535-556.
    9. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    10. Benhammou, Mohammed & Draoui, Belkacem, 2015. "Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 348-355.
    11. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    13. Agrawal, Kamal Kumar & Misra, Rohit & Yadav, Tejpal & Agrawal, Ghanshyam Das & Jamuwa, Doraj Kamal, 2018. "Experimental study to investigate the effect of water impregnation on thermal performance of earth air tunnel heat exchanger for summer cooling in hot and arid climate," Renewable Energy, Elsevier, vol. 120(C), pages 255-265.
    14. Zukowski, Mroslaw & Topolanska, Justyna, 2018. "Comparison of thermal performance between tube and plate ground-air heat exchangers," Renewable Energy, Elsevier, vol. 115(C), pages 697-710.
    15. Liu, Zhengxuan & Yu, Zhun (Jerry) & Yang, Tingting & Roccamena, Letizia & Sun, Pengcheng & Li, Shuisheng & Zhang, Guoqiang & El Mankibi, Mohamed, 2019. "Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system," Energy, Elsevier, vol. 172(C), pages 220-231.
    16. Lin, Jian & Nowamooz, Hossein & Braymand, Sandrine & Wolff, Patrice & Fond, Christophe, 2020. "Impact of soil moisture on the long-term energy performance of an earth-air heat exchanger system," Renewable Energy, Elsevier, vol. 147(P2), pages 2676-2687.
    17. Kappler, Genyr & Dias, João Batista & Haeberle, Fernanda & Wander, Paulo Roberto & Moraes, Carlos Alberto Mendes & Modolo, Regina Célia Espinosa, 2019. "Study of an earth-to-water heat exchange system which relies on underground water tanks," Renewable Energy, Elsevier, vol. 133(C), pages 1236-1246.
    18. Kwang-Seob Lee & Eun-Chul Kang & Yu-Jin Kim & Euy-Joon Lee, 2019. "Model Verification and Justification Study of Spirally Corrugated Pipes in a Ground-Air Heat Exchanger Application," Energies, MDPI, vol. 12(21), pages 1-13, October.
    19. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    20. Wei, Haibin & Yang, Dong & Du, Jinhui & Guo, Xin, 2021. "Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region," Renewable Energy, Elsevier, vol. 167(C), pages 530-541.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:158:y:2020:i:c:p:585-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.