IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v77y2015icp447-455.html
   My bibliography  Save this article

Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel

Author

Listed:
  • Ibrahim, Mohamad Faizal
  • Abd-Aziz, Suraini
  • Yusoff, Mohd. Ezreeza Mohamed
  • Phang, Lai Yee
  • Hassan, Mohd Ali

Abstract

Simultaneous saccharification and acetone–ethanol–butanol (ABE) fermentation was conducted in order to reduce the number of steps involved in the conversion of lignocellulosic biomass into butanol. Enzymatic saccharification of pretreated oil palm empty fruit bunch (OPEFB) by cellulase produced 31.58 g/l of fermentable sugar. This saccharification was conducted at conditions similar to the conditions required for ABE fermentation. The simultaneous process by Clostridium acetobutylicum ATCC 824 produced 4.45 g/l of ABE with butanol concentration of 2.75 g/l. The butanol yield of 0.11 g/g and ABE yield of 0.18 g/g were obtained from this simultaneous process as compared to the two-step process (0.10 g/g of butanol yield and 0.14 g/g of ABE yield). In addition, the simultaneous process also produced higher cumulative hydrogen (282.42 ml) than to the two-step process (222.02 ml) after 96 h of fermentation time. This study suggested that the simultaneous process has the potential to be implemented for the integrated production of butanol and hydrogen from lignocellulosic biomass.

Suggested Citation

  • Ibrahim, Mohamad Faizal & Abd-Aziz, Suraini & Yusoff, Mohd. Ezreeza Mohamed & Phang, Lai Yee & Hassan, Mohd Ali, 2015. "Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel," Renewable Energy, Elsevier, vol. 77(C), pages 447-455.
  • Handle: RePEc:eee:renene:v:77:y:2015:i:c:p:447-455
    DOI: 10.1016/j.renene.2014.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811400874X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.12.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Verónica & Päkkilä, Johanna & Ojamo, Heikki & Muurinen, Esa & Keiski, Riitta L., 2011. "Challenges in biobutanol production: How to improve the efficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 964-980, February.
    2. Sumathi, S. & Chai, S.P. & Mohamed, A.R., 2008. "Utilization of oil palm as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2404-2421, December.
    3. Jin, Chao & Yao, Mingfa & Liu, Haifeng & Lee, Chia-fon F. & Ji, Jing, 2011. "Progress in the production and application of n-butanol as a biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4080-4106.
    4. Edward M. Rubin, 2008. "Genomics of cellulosic biofuels," Nature, Nature, vol. 454(7206), pages 841-845, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Dziemianowicz & Katarzyna Kotarska & Anna Świerczyńska, 2022. "Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    2. Pinto, T. & Flores-Alsina, X. & Gernaey, K.V. & Junicke, H., 2021. "Alone or together? A review on pure and mixed microbial cultures for butanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    4. Thota, Sai Praneeth & Badiya, Pradeep Kumar & Yerram, Sandeep & Vadlani, Praveen V. & Pandey, Meera & Golakoti, Nageswara Rao & Belliraj, Siva Kumar & Dandamudi, Rajesh Babu & Ramamurthy, Sai Sathish, 2017. "Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses," Renewable Energy, Elsevier, vol. 103(C), pages 766-773.
    5. Huzir, Nurhamieza Md & Aziz, Md Maniruzzaman A. & Ismail, S.B. & Abdullah, Bawadi & Mahmood, Nik Azmi Nik & Umor, N.A. & Syed Muhammad, Syed Anuar Faua’ad, 2018. "Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 476-485.
    6. Rezaei, Mahbobe & Amiri, Hamid & Shafiei, Marzieh, 2021. "Aqueous pretreatment of triticale straw for integrated production of hemicellulosic methane and cellulosic butanol," Renewable Energy, Elsevier, vol. 171(C), pages 971-980.
    7. Ahmad, Farah B. & Zhang, Zhanying & Doherty, William O.S. & O'Hara, Ian M., 2019. "The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 386-411.
    8. Mishra, Rashmi Ranjan & Samantaray, Barsha & Chandra Behera, Bikash & Pradhan, Biswa Ranjan & Mohapatra, Sonali, 2020. "Process optimization for conversion of Waste Banana peels to biobutanol by A yeast Co-Culture fermentation system," Renewable Energy, Elsevier, vol. 162(C), pages 478-488.
    9. Ebrahimian, Farinaz & Karimi, Keikhosro & Angelidaki, Irini, 2022. "Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion," Renewable Energy, Elsevier, vol. 194(C), pages 552-560.
    10. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    11. Ibrahim, Mohamad Faizal & Ramli, Norhayati & Kamal Bahrin, Ezyana & Abd-Aziz, Suraini, 2017. "Cellulosic biobutanol by Clostridia: Challenges and improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1241-1254.
    12. Do, Truong Xuan & Lim, Young-il, 2016. "Techno-economic comparison of three energy conversion pathways from empty fruit bunches," Renewable Energy, Elsevier, vol. 90(C), pages 307-318.
    13. Ibrahim, Mohamad Faizal & Kim, Seung Wook & Abd-Aziz, Suraini, 2018. "Advanced bioprocessing strategies for biobutanol production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1192-1204.
    14. Suhartini, Sri & Rohma, Novita Ainur & Mardawati, Efri & Kasbawati, & Hidayat, Nur & Melville, Lynsey, 2022. "Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim, Mohamad Faizal & Ramli, Norhayati & Kamal Bahrin, Ezyana & Abd-Aziz, Suraini, 2017. "Cellulosic biobutanol by Clostridia: Challenges and improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1241-1254.
    2. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    3. Kujawska, Anna & Kujawski, Jan & Bryjak, Marek & Kujawski, Wojciech, 2015. "ABE fermentation products recovery methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 648-661.
    4. Yuanxu Li & Zhi Ning & Chia-fon F. Lee & Timothy H. Lee & Junhao Yan, 2018. "Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends," Energies, MDPI, vol. 11(5), pages 1-16, May.
    5. Luiz Filipe Paiva Brandão & Jez Willian Batista Braga & Paulo Anselmo Ziani Suarez, 2020. "Alternative butanol/gasoline and butanol/diesel fuel blends: An analysis of the interdependence between physical-chemical properties by a multivariate principal component analysis model," Energy & Environment, , vol. 31(5), pages 733-754, August.
    6. Li, Yuanxu & Ning, Zhi & Lee, Chia-fon F. & Yan, Junhao & Lee, Timothy H., 2019. "Effect of acetone-butanol-ethanol (ABE)–gasoline blends on regulated and unregulated emissions in spark-ignition engine," Energy, Elsevier, vol. 168(C), pages 1157-1167.
    7. Li, Yuqiang & Meng, Lei & Nithyanandan, Karthik & Lee, Timothy H. & Lin, Yilu & Lee, Chia-fon F. & Liao, Shengming, 2017. "Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends," Energy, Elsevier, vol. 121(C), pages 43-54.
    8. Ibrahim, Mohamad Faizal & Kim, Seung Wook & Abd-Aziz, Suraini, 2018. "Advanced bioprocessing strategies for biobutanol production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1192-1204.
    9. Wu, Han & Nithyanandan, Karthik & Zhang, Jiaxiang & Lin, Yilu & Lee, Timothy H. & Lee, Chia-fon F. & Zhang, Chunhua, 2015. "Impacts of Acetone–Butanol–Ethanol (ABE) ratio on spray and combustion characteristics of ABE–diesel blends," Applied Energy, Elsevier, vol. 149(C), pages 367-378.
    10. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    11. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    12. Norhisam Misron & Suhairi Rizuan & Aravind Vaithilingam & Nashiren Farzilah Mailah & Hanamoto Tsuyoshi & Yamada Hiroaki & Shirai Yoshihito, 2011. "Performance Improvement of a Portable Electric Generator Using an Optimized Bio-Fuel Ratio in a Single Cylinder Two-Stroke Engine," Energies, MDPI, vol. 4(11), pages 1-13, November.
    13. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Peng, Wan-feng & Huang, Chao & Chen, Xue-fang & Xiong, Lian & Chen, Xin-de & Chen, Yong & Ma, Long-long, 2013. "Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis," Renewable Energy, Elsevier, vol. 55(C), pages 31-34.
    15. Shang, Zhen & Yu, Xiumin & Ren, Lei & Wei, Guowu & Li, Guanting & Li, Decheng & Li, Yinan, 2020. "Comparative study on effects of injection mode on combustion and emission characteristics of a combined injection n-butanol/gasoline SI engine with hydrogen direct injection," Energy, Elsevier, vol. 213(C).
    16. Giakoumis, Evangelos G. & Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Rakopoulos, Dimitrios C., 2013. "Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 170-190.
    17. Dhamodaran, Gopinath & Esakkimuthu, Ganapathy Sundaram & Pochareddy, Yashwanth Kutti & Sivasubramanian, Harish, 2017. "Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine," Energy, Elsevier, vol. 125(C), pages 726-735.
    18. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    19. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    20. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:77:y:2015:i:c:p:447-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.