Process optimization for conversion of Waste Banana peels to biobutanol by A yeast Co-Culture fermentation system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.08.045
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ibrahim, Mohamad Faizal & Abd-Aziz, Suraini & Yusoff, Mohd. Ezreeza Mohamed & Phang, Lai Yee & Hassan, Mohd Ali, 2015. "Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel," Renewable Energy, Elsevier, vol. 77(C), pages 447-455.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Konstantinos Papamonioudis & Anastasia Zabaniotou, 2022. "Exploring Greek Citizens’ Circular Thinking on Food Waste Recycling in a Circular Economy—A Survey-Based Investigation," Energies, MDPI, vol. 15(7), pages 1-28, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Do, Truong Xuan & Lim, Young-il, 2016. "Techno-economic comparison of three energy conversion pathways from empty fruit bunches," Renewable Energy, Elsevier, vol. 90(C), pages 307-318.
- Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
- Ebrahimian, Farinaz & Karimi, Keikhosro & Angelidaki, Irini, 2022. "Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion," Renewable Energy, Elsevier, vol. 194(C), pages 552-560.
- Pinto, T. & Flores-Alsina, X. & Gernaey, K.V. & Junicke, H., 2021. "Alone or together? A review on pure and mixed microbial cultures for butanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Rezaei, Mahbobe & Amiri, Hamid & Shafiei, Marzieh, 2021. "Aqueous pretreatment of triticale straw for integrated production of hemicellulosic methane and cellulosic butanol," Renewable Energy, Elsevier, vol. 171(C), pages 971-980.
- Huzir, Nurhamieza Md & Aziz, Md Maniruzzaman A. & Ismail, S.B. & Abdullah, Bawadi & Mahmood, Nik Azmi Nik & Umor, N.A. & Syed Muhammad, Syed Anuar Faua’ad, 2018. "Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 476-485.
- Suhartini, Sri & Rohma, Novita Ainur & Mardawati, Efri & Kasbawati, & Hidayat, Nur & Melville, Lynsey, 2022. "Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Ahmad, Farah B. & Zhang, Zhanying & Doherty, William O.S. & O'Hara, Ian M., 2019. "The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 386-411.
- Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
- Thota, Sai Praneeth & Badiya, Pradeep Kumar & Yerram, Sandeep & Vadlani, Praveen V. & Pandey, Meera & Golakoti, Nageswara Rao & Belliraj, Siva Kumar & Dandamudi, Rajesh Babu & Ramamurthy, Sai Sathish, 2017. "Macro-micro fungal cultures synergy for innovative cellulase enzymes production and biomass structural analyses," Renewable Energy, Elsevier, vol. 103(C), pages 766-773.
- Ibrahim, Mohamad Faizal & Kim, Seung Wook & Abd-Aziz, Suraini, 2018. "Advanced bioprocessing strategies for biobutanol production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1192-1204.
- Ibrahim, Mohamad Faizal & Ramli, Norhayati & Kamal Bahrin, Ezyana & Abd-Aziz, Suraini, 2017. "Cellulosic biobutanol by Clostridia: Challenges and improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1241-1254.
- Wojciech Dziemianowicz & Katarzyna Kotarska & Anna Świerczyńska, 2022. "Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation," Energies, MDPI, vol. 15(19), pages 1-14, September.
More about this item
Keywords
RSM; Taguchi analysis; Acid pretreatment; Enzymatic saccharification; Co-culture fermentation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:478-488. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.