IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v70y2014icp3-10.html
   My bibliography  Save this article

How can a wind turbine survive in tropical cyclone?

Author

Listed:
  • Han, T.
  • McCann, G.
  • Mücke, T.A.
  • Freudenreich, K.

Abstract

This study presents the external wind conditions for the design and assessment of wind turbine loading in tropical cyclone regions, including physical constants, wind speed (cyclone classes), wind shear, turbulence intensity, turbulence length scale and turbulence spectral models. For the extreme condition, this study focuses on the wind characteristics of the cyclone eye-wall region that carries the strongest wind. For the dynamic response of wind turbine structures, it is worth the effort to characterize the size of eddies constituting turbulent wind. The turbulence integral length scale for cyclone wind is defined and validated with various measurements. Moreover, several turbulence spectral models are validated with field measurements and the ESDU von Karman model gives the best fit. Based on the external wind conditions, a new turbulent cyclone wind model is created with the associated load case(s). A state-of-the-art load analysis is performed using this new cyclone wind model and the results for the relevant turbine components are compared with the existing loads envelope.

Suggested Citation

  • Han, T. & McCann, G. & Mücke, T.A. & Freudenreich, K., 2014. "How can a wind turbine survive in tropical cyclone?," Renewable Energy, Elsevier, vol. 70(C), pages 3-10.
  • Handle: RePEc:eee:renene:v:70:y:2014:i:c:p:3-10
    DOI: 10.1016/j.renene.2014.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark D. Powell & Peter J. Vickery & Timothy A. Reinhold, 2003. "Reduced drag coefficient for high wind speeds in tropical cyclones," Nature, Nature, vol. 422(6929), pages 279-283, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yisu & Wu, Di & Yu, Yuguo & Gao, Wei, 2021. "Do cyclone impacts really matter for the long-term performance of an offshore wind turbine?," Renewable Energy, Elsevier, vol. 178(C), pages 184-201.
    2. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    3. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    2. Eric Oliver & Jinyu Sheng & Keith Thompson & Jorge Blanco, 2012. "Extreme surface and near-bottom currents in the northwest Atlantic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1425-1446, November.
    3. Adam Bechle & Chin Wu, 2014. "The Lake Michigan meteotsunamis of 1954 revisited," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 155-177, October.
    4. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    5. Vahid Valamanesh & Andrew T. Myers & Sanjay R. Arwade & Jerome F. Hajjar & Eric Hines & Weichiang Pang, 2016. "Wind-wave prediction equations for probabilistic offshore hurricane hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 541-562, August.
    6. V. Cardone & A. Cox, 2009. "Tropical cyclone wind field forcing for surge models: critical issues and sensitivities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 29-47, October.
    7. Jian Yang & Yu Chen & Hua Zhou & Zhongdong Duan, 2021. "A height-resolving tropical cyclone boundary layer model with vertical advection process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 723-749, May.
    8. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    9. Chi-Sann Liou, 2007. "Sensitivity of high-resolution tropical cyclone intensity forecasts to surface flux parameterization," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 387-399, June.
    10. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    11. Wei, K. & Arwade, S.R. & Myers, A.T. & Hallowell, S. & Hajjar, J.F. & Hines, E.M. & Pang, W., 2016. "Toward performance-based evaluation for offshore wind turbine jacket support structures," Renewable Energy, Elsevier, vol. 97(C), pages 709-721.
    12. Yashvant Das, 2018. "Parametric modeling of tropical cyclone wind fields in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1049-1084, September.
    13. Bruce Harper & Thomas Hardy & Luciano Mason & Ross Fryar, 2009. "Developments in storm tide modelling and risk assessment in the Australian region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 225-238, October.
    14. Shoude Guan & Fei-Fei Jin & Jiwei Tian & I-I Lin & Iam-Fei Pun & Wei Zhao & John Huthnance & Zhao Xu & Wenju Cai & Zhao Jing & Lei Zhou & Ping Liu & Yihan Zhang & Zhiwei Zhang & Chun Zhou & Qingxuan Y, 2024. "Ocean internal tides suppress tropical cyclones in the South China Sea," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Md Arifur Rahman & Yu Zhang & Lixin Lu & Saeed Moghimi & Kelin Hu & Ali Abdolali, 2023. "Relative accuracy of HWRF reanalysis and a parametric wind model during the landfall of Hurricane Florence and the impacts on storm surge simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 869-904, March.
    16. Wang, H. & Ke, S.T. & Wang, T.G. & Kareem, A. & Hu, L. & Ge, Y.J., 2022. "Multi-stage typhoon-induced wind effects on offshore wind turbines using a data-driven wind speed field model," Renewable Energy, Elsevier, vol. 188(C), pages 765-777.
    17. Benjamin Bass & John N. Irza & Jennifer Proft & Philip Bedient & Clint Dawson, 2017. "Fidelity of the integrated kinetic energy factor as an indicator of storm surge impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 575-595, January.
    18. N. Zweers & V. Makin & J. Vries & G. Burgers, 2012. "On the influence of changes in the drag relation on surface wind speeds and storm surge forecasts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 207-219, June.
    19. Christo Rautenbach & Tania Daniels & Marc Vos & Michael A. Barnes, 2020. "A coupled wave, tide and storm surge operational forecasting system for South Africa: validation and physical description," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1407-1439, August.
    20. Una Kim Miller & Christopher J. Zappa & Arnold L. Gordon & Seung-Tae Yoon & Craig Stevens & Won Sang Lee, 2024. "High Salinity Shelf Water production rates in Terra Nova Bay, Ross Sea from high-resolution salinity observations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:70:y:2014:i:c:p:3-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.