IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v106y2021i2d10.1007_s11069-021-04625-9.html
   My bibliography  Save this article

Long wave generation and coastal amplification due to propagating atmospheric pressure disturbances

Author

Listed:
  • Gozde Guney Dogan

    (Middle East Technical University)

  • Efim Pelinovsky

    (Institute of Applied Physics
    National Research University)

  • Andrey Zaytsev

    (Far Eastern Branch of Russian Academy of Sciences)

  • Ayse Duha Metin

    (Middle East Technical University)

  • Gulizar Ozyurt Tarakcioglu

    (Middle East Technical University)

  • Ahmet Cevdet Yalciner

    (Middle East Technical University)

  • Bora Yalciner

    (Middle East Technical University
    Middle East Technical University)

  • Ira Didenkulova

    (Nizhny Novgorod State Technical University N.a. R.E. Alekseev
    Tallinn University of Technology
    University of Oslo)

Abstract

Meteotsunamis are long waves generated by displacement of a water body due to atmospheric pressure disturbances that have similar spatial and temporal characteristics to landslide tsunamis. NAMI DANCE that solves the nonlinear shallow water equations is a widely used numerical model to simulate tsunami waves generated by seismic origin. Several validation studies showed that it is highly capable of representing the generation, propagation and nearshore amplification processes of tsunami waves, including inundation at complex topography and basin resonance. The new module of NAMI DANCE that uses the atmospheric pressure and wind forcing as the other inputs to simulate meteotsunami events is developed. In this paper, the analytical solution for the generation of ocean waves due to the propagating atmospheric pressure disturbance is obtained. The new version of the code called NAMI DANCE SUITE is validated by comparing its results with those from analytical solutions on the flat bathymetry. It is also shown that the governing equations for long wave generation by atmospheric pressure disturbances in narrow bays and channels can be written similar to the 1D case studied for tsunami generation and how it is integrated into the numerical model. The analytical solution of the linear shallow water model is defined, and results are compared with numerical solutions. A rectangular shaped flat bathymetry is used as the test domain to model the generation and propagation of ocean waves and the development of Proudman resonance due to moving atmospheric pressure disturbances. The simulation results with different ratios of pressure speed to ocean wave speed (Froude numbers) considering sub-critical, critical and super-critical conditions are presented. Fairly well agreements between analytical solutions and numerical solutions are obtained. Additionally, basins with triangular (lateral) and stepwise shelf (longitudinal) cross sections on different slopes are tested. The amplitudes of generated waves at different time steps in each simulation are presented with discussions considering the channel characteristics. These simulations present the capability of NAMI DANCE SUITE to model the effects of bathymetric conditions such as shelf slope and local bathymetry on wave amplification due to moving atmospheric pressure disturbances.

Suggested Citation

  • Gozde Guney Dogan & Efim Pelinovsky & Andrey Zaytsev & Ayse Duha Metin & Gulizar Ozyurt Tarakcioglu & Ahmet Cevdet Yalciner & Bora Yalciner & Ira Didenkulova, 2021. "Long wave generation and coastal amplification due to propagating atmospheric pressure disturbances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1195-1221, March.
  • Handle: RePEc:spr:nathaz:v:106:y:2021:i:2:d:10.1007_s11069-021-04625-9
    DOI: 10.1007/s11069-021-04625-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04625-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04625-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kristian Horvath & Ivica Vilibić, 2014. "Atmospheric mesoscale conditions during the Boothbay meteotsunami: a numerical sensitivity study using a high-resolution mesoscale model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 55-74, October.
    2. Belinda Lipa & Hardik Parikh & Don Barrick & Hugh Roarty & Scott Glenn, 2014. "High-frequency radar observations of the June 2013 US East Coast meteotsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 109-122, October.
    3. Adam Bechle & Chin Wu, 2014. "The Lake Michigan meteotsunamis of 1954 revisited," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 155-177, October.
    4. Mark D. Powell & Peter J. Vickery & Timothy A. Reinhold, 2003. "Reduced drag coefficient for high wind speeds in tropical cyclones," Nature, Nature, vol. 422(6929), pages 279-283, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jadranka Šepić & Alexander Rabinovich, 2014. "Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the “derecho” of June 29–30, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 75-107, October.
    2. Ivica Vilibić & Cléa Denamiel & Petra Zemunik & Sebastian Monserrat, 2021. "The Mediterranean and Black Sea meteotsunamis: an overview," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1223-1267, March.
    3. Michael Angove & Lewis Kozlosky & Philip Chu & Greg Dusek & Greg Mann & Eric Anderson & James Gridley & Diego Arcas & Vasily Titov & Marie Eble & Kimberly McMahon & Brian Hirsch & Walt Zaleski, 2021. "Addressing the meteotsunami risk in the united states," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1467-1487, March.
    4. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    5. Mohammad Hossein Kazeminezhad & Ivica Vilibić & Cléa Denamiel & Parvin Ghafarian & Samaneh Negah, 2021. "Weather radar and ancillary observations of the convective system causing the northern Persian Gulf meteotsunami on 19 March 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1747-1769, March.
    6. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    7. Jian Yang & Yu Chen & Hua Zhou & Zhongdong Duan, 2021. "A height-resolving tropical cyclone boundary layer model with vertical advection process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 723-749, May.
    8. Emile A. Okal, 2021. "On the possibility of seismic recording of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1125-1147, March.
    9. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    10. Eric J. Anderson & Greg E. Mann, 2021. "A high-amplitude atmospheric inertia–gravity wave-induced meteotsunami in Lake Michigan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1489-1501, March.
    11. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    12. Wei, K. & Arwade, S.R. & Myers, A.T. & Hallowell, S. & Hajjar, J.F. & Hines, E.M. & Pang, W., 2016. "Toward performance-based evaluation for offshore wind turbine jacket support structures," Renewable Energy, Elsevier, vol. 97(C), pages 709-721.
    13. David A. Williams & Kevin J. Horsburgh & David M. Schultz & Chris W. Hughes, 2021. "Proudman resonance with tides, bathymetry and variable atmospheric forcings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1169-1194, March.
    14. Alex Sheremet & Uriah Gravois & Victor Shrira, 2016. "Observations of meteotsunami on the Louisiana shelf: a lone soliton with a soliton pack," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 471-492, November.
    15. Benjamin Bass & John N. Irza & Jennifer Proft & Philip Bedient & Clint Dawson, 2017. "Fidelity of the integrated kinetic energy factor as an indicator of storm surge impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 575-595, January.
    16. N. Zweers & V. Makin & J. Vries & G. Burgers, 2012. "On the influence of changes in the drag relation on surface wind speeds and storm surge forecasts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 207-219, June.
    17. Petra Zemunik & Angelo Bonanno & Salvatore Mazzola & Giovanni Giacalone & Ignazio Fontana & Simona Genovese & Gualtiero Basilone & Julio Candela & Jadranka Šepić & Ivica Vilibić & Salvatore Aronica, 2021. "Observing meteotsunamis (“Marrobbio”) on the southwestern coast of Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1337-1363, March.
    18. Una Kim Miller & Christopher J. Zappa & Arnold L. Gordon & Seung-Tae Yoon & Craig Stevens & Won Sang Lee, 2024. "High Salinity Shelf Water production rates in Terra Nova Bay, Ross Sea from high-resolution salinity observations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Kelin Hu & Qin Chen & Sytske Kimball, 2012. "Consistency in hurricane surface wind forecasting: an improved parametric model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1029-1050, April.
    20. Donald Resio & Jennifer Irish & Joannes Westerink & Nancy Powell, 2013. "The effect of uncertainty on estimates of hurricane surge hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1443-1459, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:106:y:2021:i:2:d:10.1007_s11069-021-04625-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.