IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v66y2013i3p1443-1459.html
   My bibliography  Save this article

The effect of uncertainty on estimates of hurricane surge hazards

Author

Listed:
  • Donald Resio
  • Jennifer Irish
  • Joannes Westerink
  • Nancy Powell

Abstract

It is shown here that uncertainty can significantly affect estimated surge levels over a wide range of annual exceedance probabilities (AEPs). For AEPs in the range of 1 × 10 −2 –5 × 10 −2 in the New Orleans area, estimated surge values with and without consideration of uncertainty differ by about 0.5–1.0 m. Similarly, suppression of natural variability, such as using a single value for Mississippi River discharge in surge simulations, rather than allowing the discharge to vary probabilistically, is shown to produce deviations up to 1 m for the 1 × 10 −2 AEP in locations within the mainline river levees in this area. It is also shown that uncertainty can play a critical role in the analysis of very low probability events in the AEP range 1 × 10 −4 –1 × 10 −6 . Such events are typically used in designs of structures with major societal impacts. It is shown here that, for this range of AEPs along the west coast of Florida, the neglect of uncertainty can under-predict design surge levels by about 20 % compared to estimated surge levels that include uncertainty. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Donald Resio & Jennifer Irish & Joannes Westerink & Nancy Powell, 2013. "The effect of uncertainty on estimates of hurricane surge hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1443-1459, April.
  • Handle: RePEc:spr:nathaz:v:66:y:2013:i:3:p:1443-1459
    DOI: 10.1007/s11069-012-0315-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0315-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0315-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jennifer Irish & Donald Resio & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment. Part 2: Quantification of spatial attributes of response functions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 183-205, October.
    2. Donald Resio & Jennifer Irish & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment – part 1: basic concepts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 163-182, October.
    3. Mark D. Powell & Peter J. Vickery & Timothy A. Reinhold, 2003. "Reduced drag coefficient for high wind speeds in tropical cyclones," Nature, Nature, vol. 422(6929), pages 279-283, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Ural & Fatih Firat, 2015. "Evaluation of masonry minarets collapsed by a strong wind under uncertainty," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 999-1018, March.
    2. Donald T. Resio & Taylor G. Asher & Jennifer L. Irish, 2017. "The effects of natural structure on estimated tropical cyclone surge extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1609-1637, September.
    3. Kelsey L. Ruckert & Yawen Guan & Alexander M. R. Bakker & Chris E. Forest & Klaus Keller, 2017. "The effects of time-varying observation errors on semi-empirical sea-level projections," Climatic Change, Springer, vol. 140(3), pages 349-360, February.
    4. Donald T. Resio & Nancy Powell & Mary Cialone & Himangshu S. Das & Joannes J. Westerink, 2017. "Quantifying impacts of forecast uncertainties on predicted storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1423-1449, September.
    5. Chih-Hung Hsu & Francisco Olivera & Jennifer L. Irish, 2018. "A hurricane surge risk assessment framework using the joint probability method and surge response functions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 7-28, April.
    6. Nick Taylor & Jennifer Irish & Ikpoto Udoh & Matthew Bilskie & Scott Hagen, 2015. "Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1103-1123, June.
    7. Michelle Bensi & Thomas Weaver, 2020. "Evaluation of tropical cyclone recurrence rate: factors contributing to epistemic uncertainty," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3011-3041, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jize Zhang & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Fatimata Diop, 2018. "Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1225-1253, December.
    2. Jung, WoongHee & Taflanidis, Alexandros A. & Kyprioti, Aikaterini P. & Zhang, Jize, 2024. "Adaptive multi-fidelity Monte Carlo for real-time probabilistic storm surge predictions," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    4. Gaofeng Jia & Alexandros Taflanidis & Norberto Nadal-Caraballo & Jeffrey Melby & Andrew Kennedy & Jane Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    5. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Matthew Plumlee & Taylor G. Asher & Elaine Spiller & Richard A. Luettich & Brian Blanton & Tracy L. Kijewski-Correa & Andrew Kennedy & Lauren Schmie, 2021. "Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1349-1386, November.
    6. Gaofeng Jia & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Andrew B. Kennedy & Jane M. Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    7. Donald T. Resio & Nancy Powell & Mary Cialone & Himangshu S. Das & Joannes J. Westerink, 2017. "Quantifying impacts of forecast uncertainties on predicted storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1423-1449, September.
    8. Chih-Hung Hsu & Francisco Olivera & Jennifer L. Irish, 2018. "A hurricane surge risk assessment framework using the joint probability method and surge response functions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 7-28, April.
    9. Youn Song & Jennifer Irish & Ikpoto Udoh, 2012. "Regional attributes of hurricane surge response functions for hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1475-1490, November.
    10. Nick Taylor & Jennifer Irish & Ikpoto Udoh & Matthew Bilskie & Scott Hagen, 2015. "Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1103-1123, June.
    11. Grant Hutchings & Bruno Sansó & James Gattiker & Devin Francom & Donatella Pasqualini, 2023. "Comparing emulation methods for a high‐resolution storm surge model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
    12. Alexandros Taflanidis & Gaofeng Jia & Andrew Kennedy & Jane Smith, 2013. "Implementation/optimization of moving least squares response surfaces for approximation of hurricane/storm surge and wave responses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 955-983, March.
    13. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    14. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    15. Donald T. Resio & Taylor G. Asher & Jennifer L. Irish, 2017. "The effects of natural structure on estimated tropical cyclone surge extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1609-1637, September.
    16. Jie Song & Zhong-Ren Peng & Liyuan Zhao & Chih-Hung Hsu, 2016. "Developing a theoretical framework for integrated vulnerability of businesses to sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1219-1239, November.
    17. Antony Joseph & R. Prabhudesai & Prakash Mehra & V. Sanil Kumar & K. Radhakrishnan & Vijay Kumar & K. Ashok Kumar & Yogesh Agarwadekar & U. Bhat & Ryan Luis & Pradhan Rivankar & Blossom Viegas, 2011. "Response of west Indian coastal regions and Kavaratti lagoon to the November-2009 tropical cyclone Phyan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 293-312, May.
    18. Jian Yang & Yu Chen & Hua Zhou & Zhongdong Duan, 2021. "A height-resolving tropical cyclone boundary layer model with vertical advection process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 723-749, May.
    19. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    20. Mir Mousavi & Jennifer Irish & Ashley Frey & Francisco Olivera & Billy Edge, 2011. "Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding," Climatic Change, Springer, vol. 104(3), pages 575-597, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:66:y:2013:i:3:p:1443-1459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.