IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v55y2013icp1-5.html
   My bibliography  Save this article

The properties of pellets from mixing bamboo and rice straw

Author

Listed:
  • Liu, Zhijia
  • Liu, Xing'e
  • Fei, Benhua
  • Jiang, Zehui
  • Cai, Zhiyong
  • Yu, Yan

Abstract

Rice straw pellets are the main type of biomass solid fuel and have great potential as a bioenergy resource of the future in China. But it also showed important problems because of its high content of ashes and its low gross calorific value, reducing the possibility to be used in domestic heating. It was certified that mixing different types of biomass materials was helpful to improve the properties of pellets. To improve properties of rice straw pellets and investigate the effect of mixing bamboo and rice straw on the pellet properties, some properties of pellets, manufactured using different mixing ratio of bamboo and rice straw particles, were determined in this research. It can be concluded from this research that physical properties of all pellets meet the requirements of Pellet Fuels Institute Standard Specification for Residential/Commercial Densified except for bulk density of pellets, manufactured using mixing ratio (≤3:2) of bamboo and rice straw. The inorganic ash and gross calorific value of rice straw pellets cannot meet the requirement of Pellet Fuels Institute Standard Specification for Residential/Commercial Densified (8.0%) and the minimum requirement for making commercial pellets of DIN 51731 (>17,500 J/g). Both properties are improved through mixing bamboo particles and rice straw particles. It is significant that inorganic ash content and gross calorific value of pellets, manufactured using mixing ratio (≥3:2) of bamboo and rice straw, were lower than 8.0% and higher than 17,500 J/g, respectively. This also shows that mixing different biomass materials is an effective way to optimize properties of biomass solid fuel. All pellets after improvement are proposed as biomass solid fuel and have the potential to be developed as commercial pellets on an industrial scale in China.

Suggested Citation

  • Liu, Zhijia & Liu, Xing'e & Fei, Benhua & Jiang, Zehui & Cai, Zhiyong & Yu, Yan, 2013. "The properties of pellets from mixing bamboo and rice straw," Renewable Energy, Elsevier, vol. 55(C), pages 1-5.
  • Handle: RePEc:eee:renene:v:55:y:2013:i:c:p:1-5
    DOI: 10.1016/j.renene.2012.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112007781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Longjian & Xing, Li & Han, Lujia, 2009. "Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2689-2695, December.
    2. Abasaeed, A.E., 1992. "Briquetting of carbonized cotton stalk," Energy, Elsevier, vol. 17(9), pages 877-882.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obidziński, Sławomir & Piekut, Jolanta & Dec, Dorota, 2016. "The influence of potato pulp content on the properties of pellets from buckwheat hulls," Renewable Energy, Elsevier, vol. 87(P1), pages 289-297.
    2. Sae Byul Kang & Bong Suk Sim & Jong Jin Kim, 2017. "Volume and Mass Measurement of a Burning Wood Pellet by Image Processing," Energies, MDPI, vol. 10(5), pages 1-13, May.
    3. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    4. Yan, Puxiang & Wang, Haiyong & Liao, Yuhe & Wang, Chenguang, 2023. "Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. Md Tanvir Alam & Jang-Soo Lee & Sang-Yeop Lee & Dhruba Bhatta & Kunio Yoshikawa & Yong-Chil Seo, 2019. "Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass," Energies, MDPI, vol. 12(22), pages 1-17, November.
    6. Barbanera, M. & Lascaro, E. & Stanzione, V. & Esposito, A. & Altieri, R. & Bufacchi, M., 2016. "Characterization of pellets from mixing olive pomace and olive tree pruning," Renewable Energy, Elsevier, vol. 88(C), pages 185-191.
    7. Sunyong Park & Hui-Rim Jeong & Yun-A Shin & Seok-Jun Kim & Young-Min Ju & Kwang-Cheol Oh & La-Hoon Cho & DaeHyun Kim, 2021. "Performance Optimisation of Fuel Pellets Comprising Pepper Stem and Coffee Grounds through Mixing Ratios and Torrefaction," Energies, MDPI, vol. 14(15), pages 1-16, August.
    8. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    9. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    10. Liu, Zhijia & Hu, Wanhe & Jiang, Zehui & Mi, Bingbing & Fei, Benhua, 2016. "Investigating combustion behaviors of bamboo, torrefied bamboo, coal and their respective blends by thermogravimetric analysis," Renewable Energy, Elsevier, vol. 87(P1), pages 346-352.
    11. da Silva, Sandra Bezerra & Arantes, Marina Donária Chaves & de Andrade, Jaily Kerller Batista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & Protásio, Thiago de Paula, 2020. "Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil," Renewable Energy, Elsevier, vol. 147(P1), pages 1870-1879.
    12. de Souza, Hector Jesus Pegoretti Leite & Arantes, Marina Donária Chaves & Vidaurre, Graziela Baptista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & de Souza, Daniel Pegoretti Lei, 2020. "Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production," Renewable Energy, Elsevier, vol. 149(C), pages 128-140.
    13. Acaroglu, Mustafa & Baser, Eyup & Aydogan, Hasan & Canli, Eyüb, 2022. "A new energy crop onopordum spp.: A research on biofuel properties," Energy, Elsevier, vol. 261(PB).
    14. Dao, Cuong N. & Salam, Abdul & Kim Oanh, Nguyen Thi & Tabil, Lope G., 2022. "Effects of length-to-diameter ratio, pinewood sawdust, and sodium lignosulfonate on quality of rice straw pellets produced via a flat die pellet mill," Renewable Energy, Elsevier, vol. 181(C), pages 1140-1154.
    15. Marrugo, Gloria & Valdés, Carlos F. & Gómez, Carlos & Chejne, Farid, 2019. "Pelletizing of Colombian agro-industrial biomasses with crude glycerol," Renewable Energy, Elsevier, vol. 134(C), pages 558-568.
    16. Guo, Feihong & Chen, Jun & He, Yi & Gardy, Jabbar & Sun, Yahui & Jiang, Jingyu & Jiang, Xiaoxiang, 2022. "Upgrading agro-pellets by torrefaction and co-pelletization process using food waste as a pellet binder," Renewable Energy, Elsevier, vol. 191(C), pages 213-224.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gangil, Sandip, 2015. "Benefits of weakening in thermogravimetric signals of hemicellulose and lignin for producing briquettes from soybean crop residue," Energy, Elsevier, vol. 81(C), pages 729-737.
    2. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    3. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Anna Brunerová & Hynek Roubík & Milan Brožek, 2018. "Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel," Energies, MDPI, vol. 11(9), pages 1-20, August.
    5. Zhou, Yuguang & Zhang, Zongxi & Zhang, Yixiang & Wang, Yungang & Yu, Yang & Ji, Fang & Ahmad, Riaz & Dong, Renjie, 2016. "A comprehensive review on densified solid biofuel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1412-1428.
    6. Monteiro, Eliseu & Ramos, Ana & Rouboa, Abel, 2024. "Fundamental designs of gasification plants for combined heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    7. Zhang, Bingquan & Xu, Jialu & Lin, Zhixian & Lin, Tao & Faaij, André P.C., 2021. "Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    9. Md Tanvir Alam & Jang-Soo Lee & Sang-Yeop Lee & Dhruba Bhatta & Kunio Yoshikawa & Yong-Chil Seo, 2019. "Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass," Energies, MDPI, vol. 12(22), pages 1-17, November.
    10. Obi, Okey Francis, 2015. "Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1749-1758.
    11. Gangil, Sandip & Bhargav, Vinod Kumar, 2019. "Influences of binderless briquetting stresses on intrinsic bioconstituents of rice straw based solid biofuel," Renewable Energy, Elsevier, vol. 133(C), pages 462-469.
    12. Feng, Cheng & Yu, Xinxin & Tan, Hanqiu & Liu, Tian & Hu, Tianyu & Zhang, Zhuoyan & Qiu, Shi & Chen, Longjian, 2013. "The economic feasibility of a crop-residue densification plant: A case study for the city of Jinzhou in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 172-180.
    13. Chen, N.N. & Chen, M.Q. & Fu, B.A. & Song, J.J., 2017. "Far-infrared irradiation drying behavior of typical biomass briquettes," Energy, Elsevier, vol. 121(C), pages 726-738.
    14. Callejón-Ferre, A.J. & Velázquez-Martí, B. & López-Martínez, J.A. & Manzano-Agugliaro, F., 2011. "Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 948-955, February.
    15. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    16. liu, Zhijia & Jiang, Zehui & Cai, Zhiyong & Fei, Benhua & YanYu, & Liu, Xing'e, 2013. "Effects of carbonization conditions on properties of bamboo pellets," Renewable Energy, Elsevier, vol. 51(C), pages 1-6.
    17. Liu, Xiaodan & Feng, Xuping & He, Yong, 2019. "Rapid discrimination of the categories of the biomass pellets using laser-induced breakdown spectroscopy," Renewable Energy, Elsevier, vol. 143(C), pages 176-182.
    18. Tatiana Ivanova & Abraham Kabutey & David Herák & Cimen Demirel, 2018. "Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading," Energies, MDPI, vol. 11(8), pages 1-11, July.
    19. Mamta Kumari & Jagdeep Singh, 2022. "Environmental, Social And Economic Impacts Of ‘Briquetting Plant And Briquettes'," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(1), pages 32-40, May.
    20. Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:55:y:2013:i:c:p:1-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.