IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4390-d288420.html
   My bibliography  Save this article

Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass

Author

Listed:
  • Md Tanvir Alam

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea
    Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
    These authors contributed equally to this work.)

  • Jang-Soo Lee

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea
    These authors contributed equally to this work.)

  • Sang-Yeop Lee

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

  • Dhruba Bhatta

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea
    School of Environment and Society, Tokyo Institute of Technology, Midori-Ku, Yokohama 226-8502, Japan)

  • Kunio Yoshikawa

    (School of Environment and Society, Tokyo Institute of Technology, Midori-Ku, Yokohama 226-8502, Japan)

  • Yong-Chil Seo

    (Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 26493, Korea)

Abstract

Thirteen types of fuel pellets were prepared from hydrothermally treated hospital solid waste, hydrothermally treated rice straw, pyrolytic plastic waste residue, rice straw, and Sakhalin fir residue using a flat die pellet machine. Different pellet properties such as pellet density, pellet durability, aspect ratio, physicochemical characteristics, and gross calorific value (GCV) were evaluated as well as compared concerning the European standard specification for residential/commercial densified fuels. In addition, the quality of pellets was compared with coal. The results showed that the pellets made only with hydrothermally treated hospital solid waste, hydrothermally treated rice straw, pyrolytic plastic waste residue, and rice straw failed to meet few individual criteria (<3 wt% ash content, <10 wt% moisture content, <0.03 wt% chlorine content, >96.5 wt% pellet durability, and >600 kg/m 3 pellet density) of the European standard specifications. However, most of the mixed fuel pellets satisfied the requirement of pellet properties according to the European standard specification. In particular, up to 16.70 wt% hydrothermally treated rice straw, 1.50 wt% hydrothermally treated hospital solid waste, and 4.76 wt% of pyrolytic plastic waste residue can be blended with Shakhalin fir residue to produce low-chlorine fuel pellets. The gross calorific value of pellets made from the mixture of hydrothermally treated wastes and pyrolytic plastic waste residue (around 22 MJ/kg) showed similar results to that of coal. In the case of mixed pellets, the presence of these hydrothermally treated wastes and pyrolytic plastic waste residue valorized the fuel pellet quality. The main outcome of this study was the production of low chlorine biomass fuel pellets of high gross calorific values blended with hydrothermally treated wastes and pyrolytic waste residues, which opens a new door for utilizing waste in a better way, especially hospital solid waste.

Suggested Citation

  • Md Tanvir Alam & Jang-Soo Lee & Sang-Yeop Lee & Dhruba Bhatta & Kunio Yoshikawa & Yong-Chil Seo, 2019. "Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass," Energies, MDPI, vol. 12(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4390-:d:288420
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Kong, Lingjun & Tian, ShuangHong & He, Chun & Du, Changming & Tu, YuTing & Xiong, Ya, 2012. "Effect of waste wrapping paper fiber as a “solid bridge” on physical characteristics of biomass pellets made from wood sawdust," Applied Energy, Elsevier, vol. 98(C), pages 33-39.
    3. Liu, Zhijia & Liu, Xing'e & Fei, Benhua & Jiang, Zehui & Cai, Zhiyong & Yu, Yan, 2013. "The properties of pellets from mixing bamboo and rice straw," Renewable Energy, Elsevier, vol. 55(C), pages 1-5.
    4. Norfadhilah Hamzah & Koji Tokimatsu & Kunio Yoshikawa, 2019. "Solid Fuel from Oil Palm Biomass Residues and Municipal Solid Waste by Hydrothermal Treatment for Electrical Power Generation in Malaysia: A Review," Sustainability, MDPI, vol. 11(4), pages 1-23, February.
    5. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    6. Chen, Longjian & Xing, Li & Han, Lujia, 2009. "Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2689-2695, December.
    7. Liu, Zhengang & Balasubramanian, Rajasekhar, 2014. "Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): A comparative evaluation," Applied Energy, Elsevier, vol. 114(C), pages 857-864.
    8. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Giakoumakis & Dorothea Politi & Dimitrios Sidiras, 2021. "Medical Waste Treatment Technologies for Energy, Fuels, and Materials Production: A Review," Energies, MDPI, vol. 14(23), pages 1-30, December.
    2. Md Tanvir Alam & Se-Won Park & Sang-Yeop Lee & Yean-Ouk Jeong & Anthony De Girolamo & Yong-Chil Seo & Hang Seok Choi, 2020. "Co-Gasification of Treated Solid Recovered Fuel Residue by Using Minerals Bed and Biomass Waste Blends," Energies, MDPI, vol. 13(8), pages 1-16, April.
    3. Sang Yeop Lee & Se Won Park & Md Tanvir Alam & Yean Ouk Jeong & Yong-Chil Seo & Hang Seok Choi, 2020. "Studies on the Gasification Performance of Sludge Cake Pre-Treated by Hydrothermal Carbonization," Energies, MDPI, vol. 13(6), pages 1-15, March.
    4. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    2. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    3. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    4. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    5. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    6. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    7. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    8. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Obi, Okey Francis, 2015. "Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1749-1758.
    10. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    11. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    12. Saad A El-Sayed & Mohammed Khairy Elsaid Mohamed, 2018. "Mechanical properties and characteristics of wheat straw and pellets," Energy & Environment, , vol. 29(7), pages 1224-1246, November.
    13. Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.
    14. da Silva, Sandra Bezerra & Arantes, Marina Donária Chaves & de Andrade, Jaily Kerller Batista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & Protásio, Thiago de Paula, 2020. "Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil," Renewable Energy, Elsevier, vol. 147(P1), pages 1870-1879.
    15. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    16. Yang, Wei & Zhu, Youjian & Cheng, Wei & Sang, Huiying & Xu, Hanshen & Yang, Haiping & Chen, Hanping, 2018. "Effect of minerals and binders on particulate matter emission from biomass pellets combustion," Applied Energy, Elsevier, vol. 215(C), pages 106-115.
    17. Atay, Orhan Alp & Ekinci, Kamil, 2020. "Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark," Renewable Energy, Elsevier, vol. 149(C), pages 933-939.
    18. Vargas-Moreno, J.M. & Callejón-Ferre, A.J. & Pérez-Alonso, J. & Velázquez-Martí, B., 2012. "A review of the mathematical models for predicting the heating value of biomass materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3065-3083.
    19. Meihui Li & Na Luo & Yi Lu, 2017. "Biomass Energy Technological Paradigm (BETP): Trends in This Sector," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    20. Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4390-:d:288420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.