Benefits of weakening in thermogravimetric signals of hemicellulose and lignin for producing briquettes from soybean crop residue
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.01.018
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Singh, R.N. & Vyas, D.K. & Srivastava, N.S.L. & Narra, Madhuri, 2008. "SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy," Renewable Energy, Elsevier, vol. 33(8), pages 1868-1873.
- Chen, Longjian & Xing, Li & Han, Lujia, 2009. "Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2689-2695, December.
- Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
- Gangil, Sandip, 2015. "Superiority of intrinsic biopolymeric constituents in briquettes of lignocellulosic crop residues over wood: A TG-diagnosis," Renewable Energy, Elsevier, vol. 76(C), pages 478-483.
- Abasaeed, A.E., 1992. "Briquetting of carbonized cotton stalk," Energy, Elsevier, vol. 17(9), pages 877-882.
- Purohit, Pallav & Tripathi, Arun Kumar & Kandpal, Tara Chandra, 2006. "Energetics of coal substitution by briquettes of agricultural residues," Energy, Elsevier, vol. 31(8), pages 1321-1331.
- Singh, R.N. & Bhoi, P.R. & Patel, S.R., 2007. "Modification of commercial briquetting machine to produce 35mm diameter briquettes suitable for gasification and combustion," Renewable Energy, Elsevier, vol. 32(3), pages 474-479.
- Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
- Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gangil, Sandip & Bhargav, Vinod Kumar, 2019. "Influences of binderless briquetting stresses on intrinsic bioconstituents of rice straw based solid biofuel," Renewable Energy, Elsevier, vol. 133(C), pages 462-469.
- Gangil, Sandip & Bhargav, Vinod Kumar, 2018. "Influence of torrefaction on intrinsic bioconstituents of cotton stalk: TG-insights," Energy, Elsevier, vol. 142(C), pages 1066-1073.
- Durga, Mattaparthi Lakshmi & Gangil, Sandip & Bhargav, Vinod Kumar, 2022. "Thermal influx induced biopolymeric transitions in paddy straw," Renewable Energy, Elsevier, vol. 199(C), pages 1024-1032.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Asamoah, Bernice & Nikiema, Josiane & Gebrezgabher, Solomie & Odonkor, Elsie & Njenga, M., 2016. "A review on production, marketing and use of fuel briquettes," IWMI Reports 257959, International Water Management Institute.
- Gangil, Sandip & Bhargav, Vinod Kumar, 2019. "Influences of binderless briquetting stresses on intrinsic bioconstituents of rice straw based solid biofuel," Renewable Energy, Elsevier, vol. 133(C), pages 462-469.
- Gangil, Sandip, 2015. "Superiority of intrinsic biopolymeric constituents in briquettes of lignocellulosic crop residues over wood: A TG-diagnosis," Renewable Energy, Elsevier, vol. 76(C), pages 478-483.
- Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
- Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Anna Brunerová & Hynek Roubík & Milan Brožek, 2018. "Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel," Energies, MDPI, vol. 11(9), pages 1-20, August.
- liu, Zhijia & Jiang, Zehui & Cai, Zhiyong & Fei, Benhua & YanYu, & Liu, Xing'e, 2013. "Effects of carbonization conditions on properties of bamboo pellets," Renewable Energy, Elsevier, vol. 51(C), pages 1-6.
- Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
- Liu, Xiaodan & Feng, Xuping & He, Yong, 2019. "Rapid discrimination of the categories of the biomass pellets using laser-induced breakdown spectroscopy," Renewable Energy, Elsevier, vol. 143(C), pages 176-182.
- Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan & Nik Nor Rahimah Nik Ab Rahim, 2022. "Techno-Economic Viability Assessment of a Household Scale Agricultural Residue Composite Briquette Project for Rural Communities in Nigeria," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
- Luo, S.Y. & Xiao, B. & Hu, Z.Q. & Liu, S.M. & Guan, Y.W., 2009. "Experimental study on oxygen-enriched combustion of biomass micro fuel," Energy, Elsevier, vol. 34(11), pages 1880-1884.
- Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
- Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Pang, Mingyue & Hao, Yan, 2017. "A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China," Energy, Elsevier, vol. 120(C), pages 374-384.
- Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.
- Liu, Zhijia & Liu, Xing'e & Fei, Benhua & Jiang, Zehui & Cai, Zhiyong & Yu, Yan, 2013. "The properties of pellets from mixing bamboo and rice straw," Renewable Energy, Elsevier, vol. 55(C), pages 1-5.
- Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
- Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
- Maria Angeles Garrido & Juan A. Conesa & Maria Dolores Garcia, 2017. "Characterization and Production of Fuel Briquettes Made from Biomass and Plastic Wastes," Energies, MDPI, vol. 10(7), pages 1-12, June.
- Ahmed M. K. Abdel Aal & Omer H. M. Ibrahim & Ammar Al-Farga & Ehab A. El Saeidy, 2023. "Impact of Biomass Moisture Content on the Physical Properties of Briquettes Produced from Recycled Ficus nitida Pruning Residuals," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
- El may, Yassine & Jeguirim, Mejdi & Dorge, Sophie & Trouvé, Gwenaelle & Said, Rachid, 2012. "Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres," Energy, Elsevier, vol. 44(1), pages 702-709.
More about this item
Keywords
Kinetics; Thermogravimetry; Activation energy; Briquetted biofuel; Soybean crop residues;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:81:y:2015:i:c:p:729-737. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.