IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5077-d800360.html
   My bibliography  Save this article

Estimation for Potential of Agricultural Biomass Sources as Projections of Bio-Briquettes in Indian Context

Author

Listed:
  • Sunny Vaish

    (Research Scholar, I.K. Gujral Punjab Technical University Jalandhar, Kapurthala 144603, India)

  • Gagandeep Kaur

    (Faculty of Engineering, I.K. Gujral Punjab Technical University Jalandhar, Kapurthala 144603, India)

  • Naveen Kumar Sharma

    (Faculty of Engineering, I.K. Gujral Punjab Technical University Jalandhar, Kapurthala 144603, India)

  • Nikhil Gakkhar

    (Sardar Swaran Singh National Institute of Bioenergy, Kapurthala 144602, India)

Abstract

Energy is an indicator of the socio-economic development of any country and has become an indispensable part of modern society. Despite several renewable sources of energy generation, biomass sources are still under-utilized due to the absence of standard policies of estimation of resources at the country level. This paper attempts to estimate the gross crop residue and surplus residue potential for all provinces of the agricultural country, India. In India, the total area under crop production is 94,305 thousand hectares and the yield from all significant crops is 309,133 kg per hectare. It is estimated that total gross crop residue generation in the country is 480 million tonnes. Subsequently, after consumption of crop residues for numerous applications, the surplus crop residues are 121 million tonnes. The bioenergy potential from the surplus residues is estimated as 1988 PJ, which offers a huge potential energy source, from materials otherwise treated as waste. The Indian province Punjab, rich in agricultural sources and covering only 7% of the total cropping area of the country, generates 11% of the total surplus crop which could be used for further efficient use as bio briquettes.

Suggested Citation

  • Sunny Vaish & Gagandeep Kaur & Naveen Kumar Sharma & Nikhil Gakkhar, 2022. "Estimation for Potential of Agricultural Biomass Sources as Projections of Bio-Briquettes in Indian Context," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5077-:d:800360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gagandeep Kaur & Yadwinder Singh Brar & D.P. Kothari, 2017. "Potential of Livestock Generated Biomass: Untapped Energy Source in India," Energies, MDPI, vol. 10(7), pages 1-15, June.
    2. Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Muhammad Roil Bilad & Muhammad T. Afzal & Ashak Mahmud Parvez & Farah Amelia Shahirah Roslan & Syahirah Abdul Rahim & Vimmal Desiga Vinayagam & Haruna K, 2021. "Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    3. Chen, Longjian & Xing, Li & Han, Lujia, 2009. "Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2689-2695, December.
    4. Ngusale, George K. & Luo, Yonghao & Kiplagat, Jeremiah K., 2014. "Briquette making in Kenya: Nairobi and peri-urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 749-759.
    5. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    6. Rao, P. Venkateswara & Baral, Saroj S. & Dey, Ranjan & Mutnuri, Srikanth, 2010. "Biogas generation potential by anaerobic digestion for sustainable energy development in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2086-2094, September.
    7. Mittal, Shivika & Ahlgren, Erik O. & Shukla, P.R., 2019. "Future biogas resource potential in India: A bottom-up analysis," Renewable Energy, Elsevier, vol. 141(C), pages 379-389.
    8. Obi, Okey Francis, 2015. "Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1749-1758.
    9. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    10. Bhattacharyya, Subhes C., 2006. "Energy access problem of the poor in India: Is rural electrification a remedy?," Energy Policy, Elsevier, vol. 34(18), pages 3387-3397, December.
    11. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.
    2. Dorota Janiszewska & Luiza Ossowska, 2023. "Spatial Differentiation of Agricultural Biomass Potential in Polish Voivodeships," Energies, MDPI, vol. 16(19), pages 1-16, September.
    3. Dorota Janiszewska & Luiza Ossowska, 2022. "The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries," Energies, MDPI, vol. 15(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gagandeep Kaur & Yadwinder Singh Brar & D.P. Kothari, 2017. "Potential of Livestock Generated Biomass: Untapped Energy Source in India," Energies, MDPI, vol. 10(7), pages 1-15, June.
    2. Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
    3. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    4. Karthikeyan Natarajan & Petri Latva-Käyrä & Anas Zyadin & Suresh Chauhan & Harminder Singh & Ari Pappinen & Paavo Pelkonen, 2015. "Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India," Challenges, MDPI, vol. 6(1), pages 1-15, May.
    5. Sunday Yusuf Kpalo & Mohamad Faiz Zainuddin & Latifah Abd Manaf & Ahmad Muhaimin Roslan, 2020. "A Review of Technical and Economic Aspects of Biomass Briquetting," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    6. Irfan, Muhammad & Elavarasan, Rajvikram Madurai & Ahmad, Munir & Mohsin, Muhammad & Dagar, Vishal & Hao, Yu, 2022. "Prioritizing and overcoming biomass energy barriers: Application of AHP and G-TOPSIS approaches," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    7. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    8. Natarajan, Karthikeyan & Latva-Käyrä, Petri & Zyadin, Anas & Pelkonen, Paavo, 2016. "New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 256-268.
    9. Gaurav Kumar Porichha & Yulin Hu & Kasanneni Tirumala Venkateswara Rao & Chunbao Charles Xu, 2021. "Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy," Energies, MDPI, vol. 14(14), pages 1-17, July.
    10. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    11. Wajahat Ullah Khan Tareen & Muhammad Tariq Dilbar & Muhammad Farhan & Muhammad Ali Nawaz & Ali Waqar Durrani & Kamran Ali Memon & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Muhammad Amir & Mu, 2019. "Present Status and Potential of Biomass Energy in Pakistan Based on Existing and Future Renewable Resources," Sustainability, MDPI, vol. 12(1), pages 1-40, December.
    12. Chinnici, Gaetano & D’Amico, Mario & Rizzo, Marcella & Pecorino, Biagio, 2015. "Analysis of biomass availability for energy use in Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1025-1030.
    13. Birthal, Pratap S., 2019. "Fuelled by technological change and backed by investment in irrigation, infrastructure (e.g., roads and electricity) markets and institutions (e.g., credit and extension) and enabling policies India e," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 74(01), March.
    14. Maria Raimondo & Francesco Caracciolo & Luigi Cembalo & Gaetano Chinnici & Biagio Pecorino & Mario D’Amico, 2018. "Making Virtue Out of Necessity: Managing the Citrus Waste Supply Chain for Bioeconomy Applications," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    15. Bundhoo, Zumar M.A. & Mauthoor, Sumayya & Mohee, Romeela, 2016. "Potential of biogas production from biomass and waste materials in the Small Island Developing State of Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1087-1100.
    16. Yaashikaa, P.R. & Kumar, P. Senthil, 2022. "Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review," MPRA Paper 112234, University Library of Munich, Germany.
    17. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    18. Shane, Agabu & Gheewala, Shabbir H. & Fungtammasan, Bundit & Silalertruksa, Thapat & Bonnet, Sébastien & Phiri, Seveliano, 2016. "Bioenergy resource assessment for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 93-104.
    19. Karanja, Alice & Gasparatos, Alexandros, 2019. "Adoption and impacts of clean bioenergy cookstoves in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 285-306.
    20. Chambon, Clementine L. & Karia, Tanuj & Sandwell, Philip & Hallett, Jason P., 2020. "Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India," Renewable Energy, Elsevier, vol. 154(C), pages 432-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5077-:d:800360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.