IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222021892.html
   My bibliography  Save this article

A new energy crop onopordum spp.: A research on biofuel properties

Author

Listed:
  • Acaroglu, Mustafa
  • Baser, Eyup
  • Aydogan, Hasan
  • Canli, Eyüb

Abstract

Onopordum spp. is investigated experimentally for biofuel properties. The plant is introduced, biofuel production processes are explained, and exergy destruction is quantified. The aim of the research is to provide a solid candidate for production and adaptation of drought-resistant renewable energy plants. The plant is not regarded as a probable source of agricultural food ethics and insignificant food properties. The onopordum plant is regarded as an ideal biofuel plant. Solid fuels in pellet form were produced from its stalk and pulp, while biodiesel was produced from its oil seeds by means of a patented method. Properties of the biodiesel that was produced from the oil of the onopordum were determined. An exergy analysis was conducted in order to find the destructed exergy by the biofuel production process. The exergy analysis is crucial to distinguish similar energy plants with similar energy contents. The onopordum pellets have lower heating value of about 15.10 MJ/kg while liquid products have values of about 40 MJ/kg. The irreversibility throughout the biofuel production process was found to be 126.692 MJ. According to the obtained quantities and the nature of the plant, the onopordum spp. has a great potential for energy plant cultivation applications.

Suggested Citation

  • Acaroglu, Mustafa & Baser, Eyup & Aydogan, Hasan & Canli, Eyüb, 2022. "A new energy crop onopordum spp.: A research on biofuel properties," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021892
    DOI: 10.1016/j.energy.2022.125305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhijia & Mi, Bingbing & Jiang, Zehui & Fei, Benhua & Cai, Zhiyong & Liu, Xing'e, 2016. "Improved bulk density of bamboo pellets as biomass for energy production," Renewable Energy, Elsevier, vol. 86(C), pages 1-7.
    2. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    3. Liu, Zhijia & Liu, Xing'e & Fei, Benhua & Jiang, Zehui & Cai, Zhiyong & Yu, Yan, 2013. "The properties of pellets from mixing bamboo and rice straw," Renewable Energy, Elsevier, vol. 55(C), pages 1-5.
    4. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    5. Panoutsou, Calliope & Eleftheriadis, John & Nikolaou, Anastasia, 2009. "Biomass supply in EU27 from 2010 to 2030," Energy Policy, Elsevier, vol. 37(12), pages 5675-5686, December.
    6. García-Maraver, A. & Popov, V. & Zamorano, M., 2011. "A review of European standards for pellet quality," Renewable Energy, Elsevier, vol. 36(12), pages 3537-3540.
    7. Khoobbakht, Golmohammad & Kheiralipour, Kamran & Rasouli, Hamed & Rafiee, Mojtaba & Hadipour, Mehrdad & Karimi, Mahmoud, 2020. "Experimental exergy analysis of transesterification in biodiesel production," Energy, Elsevier, vol. 196(C).
    8. Faaij, Andre P.C., 2006. "Bio-energy in Europe: changing technology choices," Energy Policy, Elsevier, vol. 34(3), pages 322-342, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erwan Hermawan & Adiarso Adiarso & Sigit Setiadi & Dudi Hidayat, 2023. "Strategy for the implementation of sustainable green fuels in Indonesia," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2023(1), pages 103-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    2. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    3. Andrea Acampora & Vincenzo Civitarese & Giulio Sperandio & Negar Rezaei, 2021. "Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning," Energies, MDPI, vol. 14(14), pages 1-15, July.
    4. Ajanovic, Amela & Haas, Reinhard, 2014. "CO2-reduction potentials and costs of biomass-based alternative energy carriers in Austria," Energy, Elsevier, vol. 69(C), pages 120-131.
    5. Federica Leone & Ala Hasan & Francesco Reda & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2023. "Supporting Cities towards Carbon Neutral Transition through Territorial Acupuncture," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    6. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Welfle, Andrew & Gilbert, Paul & Thornley, Patricia, 2014. "Securing a bioenergy future without imports," Energy Policy, Elsevier, vol. 68(C), pages 1-14.
    8. Bengtsson, Selma & Fridell, Erik & Andersson, Karin, 2012. "Environmental assessment of two pathways towards the use of biofuels in shipping," Energy Policy, Elsevier, vol. 44(C), pages 451-463.
    9. Sae Byul Kang & Bong Suk Sim & Jong Jin Kim, 2017. "Volume and Mass Measurement of a Burning Wood Pellet by Image Processing," Energies, MDPI, vol. 10(5), pages 1-13, May.
    10. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    11. da Silva, Sandra Bezerra & Arantes, Marina Donária Chaves & de Andrade, Jaily Kerller Batista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & Protásio, Thiago de Paula, 2020. "Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil," Renewable Energy, Elsevier, vol. 147(P1), pages 1870-1879.
    12. de Souza, Hector Jesus Pegoretti Leite & Arantes, Marina Donária Chaves & Vidaurre, Graziela Baptista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & de Souza, Daniel Pegoretti Lei, 2020. "Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production," Renewable Energy, Elsevier, vol. 149(C), pages 128-140.
    13. Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
    14. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    15. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    16. Gasol, Carles M. & Martínez, Sergio & Rigola, Miquel & Rieradevall, Joan & Anton, Assumpció & Carrasco, Juan & Ciria, Pilar & Gabarrell, Xavier, 2009. "Feasibility assessment of poplar bioenergy systems in the Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 801-812, May.
    17. Antonio Messineo & Roberto Volpe & Francesco Asdrubali, 2012. "Evaluation of Net Energy Obtainable from Combustion of Stabilised Olive Mill By-Products," Energies, MDPI, vol. 5(5), pages 1-14, May.
    18. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    19. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    20. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.