IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v2y1992i1p23-34.html
   My bibliography  Save this article

Stochastic modelling of daily global irradiation

Author

Listed:
  • Festa, R.
  • Jain, S.
  • Ratto, C.F.

Abstract

A statistical analysis of the solar daily global irradiation for Genoa, Italy, has been carried out using a 9 year time series. The frequency distribution of the fluctuations in the daily values of the time series about the mean, normalized by the standard deviation, has been transformed into a standard Normal distribution. An Autoregressive process of order 1 has been fitted to the transformed series. The daily means and the standard deviations have been estimated by two approaches, viz. (i) Fourier expansion of the daily means and standard deviations with one and two harmonics, respectively; (ii) smoothing of the daily values of these parameters by the “monthly averages method”. For both the approaches, the Autoregressive parameter has been estimated in two ways, viz. (i) keeping it time invariant; (ii) changing it day by day during a year. The fitted model has been used to generate synthetic sequences of daily solar irradiations. All the four methods produce synthetic series which almost satisfactorily match the empirical one without showing any appreciable superiority of the one over the other method.

Suggested Citation

  • Festa, R. & Jain, S. & Ratto, C.F., 1992. "Stochastic modelling of daily global irradiation," Renewable Energy, Elsevier, vol. 2(1), pages 23-34.
  • Handle: RePEc:eee:renene:v:2:y:1992:i:1:p:23-34
    DOI: 10.1016/0960-1481(92)90056-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0960148192900569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(92)90056-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parzen, Emanuel & Pagano, Marcello, 1979. "An approach to modeling seasonally stationary time series," Journal of Econometrics, Elsevier, vol. 9(1-2), pages 137-153, January.
    2. Callegari, M. & Festa, R. & Ratto, C.F., 1992. "Stochastic modelling of daily beam irradiation," Renewable Energy, Elsevier, vol. 2(6), pages 611-624.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Callegari, M. & Festa, R. & Ratto, C.F., 1992. "Stochastic modelling of daily beam irradiation," Renewable Energy, Elsevier, vol. 2(6), pages 611-624.
    2. Kamal, Lalarukh & Jafri, Yasmin Zahra, 1999. "Stochastic modeling and generation of synthetic sequences of hourly global solar irradiation at Quetta, Pakistan," Renewable Energy, Elsevier, vol. 18(4), pages 565-572.
    3. Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C.G., 2008. "Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques," Renewable Energy, Elsevier, vol. 33(8), pages 1796-1803.
    4. Youcef Ettoumi, F. & Mefti, A. & Adane, A. & Bouroubi, M.Y., 2002. "Statistical analysis of solar measurements in Algeria using beta distributions," Renewable Energy, Elsevier, vol. 26(1), pages 47-67.
    5. Ratto, C.F. & Festa, R., 1993. "A procedure for evaluating the influence of weather Markovianity on the storage behaviour of solar systems," Renewable Energy, Elsevier, vol. 3(8), pages 951-960.
    6. Kaplanis, S.N., 2006. "New methodologies to estimate the hourly global solar radiation; Comparisons with existing models," Renewable Energy, Elsevier, vol. 31(6), pages 781-790.
    7. Kaplanis, S. & Kaplani, E., 2007. "A model to predict expected mean and stochastic hourly global solar radiation I(h;nj) values," Renewable Energy, Elsevier, vol. 32(8), pages 1414-1425.
    8. Ballestrín, Jesús & Polo, Jesús & Martín-Chivelet, Nuria & Barbero, Javier & Carra, Elena & Alonso-Montesinos, Joaquín & Marzo, Aitor, 2022. "Soiling forecasting of solar plants: A combined heuristic approach and autoregressive model," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    2. Łukasz Lenart & Błażej Mazur, 2016. "On Bayesian Inference for Almost Periodic in Mean Autoregressive Models," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 1, pages 255-272, University of Lodz.
    3. Maafi, A. & Adane, A., 1998. "Analysis of the performances of the first-order two-state Markov model using solar radiation properties," Renewable Energy, Elsevier, vol. 13(2), pages 175-193.
    4. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    5. Bentarzi, Mohamed, 1998. "Model-Building Problem of Periodically Correlatedm-Variate Moving Average Processes," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 1-21, July.
    6. Ratto, C.F. & Festa, R., 1993. "A procedure for evaluating the influence of weather Markovianity on the storage behaviour of solar systems," Renewable Energy, Elsevier, vol. 3(8), pages 951-960.
    7. L. Tang & Q. Shao, 2014. "Efficient Estimation For Periodic Autoregressive Coefficients Via Residuals," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 378-389, July.
    8. Castro, Glaysar & Girardin, Valerie, 2002. "Maximum of entropy and extension of covariance matrices for periodically correlated and multivariate processes," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 37-52, August.
    9. Aleksandra Grzesiek & Prashant Giri & S. Sundar & Agnieszka WyŁomańska, 2020. "Measures of Cross‐Dependence for Bidimensional Periodic AR(1) Model with α‐Stable Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 785-807, November.
    10. Łukasz Lenart & Mateusz Pipień, 2015. "Empirical Properties of the Credit and Equity Cycle within Almost Periodically Correlated Stochastic Processes - the Case of Poland, UK and USA," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 7(3), pages 169-186, September.
    11. Qin Shao & Robert Lund, 2004. "Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 359-372, May.
    12. Lenart, Łukasz, 2013. "Non-parametric frequency identification and estimation in mean function for almost periodically correlated time series," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 252-269.
    13. Ralf Barkemeyer & Philippe Givry & Frank Figge, 2018. "Trends and patterns in sustainability-related media coverage: A classification of issue-level attention," Environment and Planning C, , vol. 36(5), pages 937-962, August.
    14. Richard M. Todd, 1989. "Periodic linear-quadratic methods for modeling seasonality," Staff Report 127, Federal Reserve Bank of Minneapolis.
    15. Craggs, C & Conway, E & Pearsall, N.M, 1999. "Stochastic modelling of solar irradiance on horizontal and vertical planes at a northerly location," Renewable Energy, Elsevier, vol. 18(4), pages 445-463.
    16. Łukasz Lenart, 2016. "Generalized Resampling Scheme With Application to Spectral Density Matrix in Almost Periodically Correlated Class of Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 369-404, May.
    17. Eugen Ursu & Pierre Duchesne, 2009. "Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 183-212, May.
    18. Basawa, I. V. & Lund, Robert & Shao, Qin, 2004. "First-order seasonal autoregressive processes with periodically varying parameters," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 299-306, May.
    19. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
    20. Callegari, M. & Festa, R. & Ratto, C.F., 1992. "Stochastic modelling of daily beam irradiation," Renewable Energy, Elsevier, vol. 2(6), pages 611-624.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:2:y:1992:i:1:p:23-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.