IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221026918.html
   My bibliography  Save this article

Soiling forecasting of solar plants: A combined heuristic approach and autoregressive model

Author

Listed:
  • Ballestrín, Jesús
  • Polo, Jesús
  • Martín-Chivelet, Nuria
  • Barbero, Javier
  • Carra, Elena
  • Alonso-Montesinos, Joaquín
  • Marzo, Aitor

Abstract

The soiling process of photovoltaic devices and heliostats is considered an important phenomenon to take into account in the design and operation of commercial Photovoltaic (PV) and Concentrating Solar-Thermal Power (CSP) plants, since in both cases the efficiency of these surfaces for solar use presents unexpected fluctuations. Many magnitudes and parameters influence in a complex manner the soiling process of an outdoor surface. In this work, it is assumed that a random disturbing source acts continuously on the surface causing its degree of soiling. Based on this assumption, a heuristic approach based on an analogous electrical model is proposed to simplify the complexity of the phenomenon. This model justifies the time series analysis of electrical losses due to soiling of a PV module by fitting an autoregressive-moving-average (ARMA) model to recorded time series at CIEMAT. This ARMA(1, 1) model allows predicting the average efficiency of this PV module in a period of 38 days with a Normalized Mean Bias Deviation (NMBD) of 1.35% and a mean relative error of 3.12%. This result can be improved by applying ordinary least squares to the model to minimize the NMBD obtaining a value of 0.17% and a mean relative error of 0.07%.

Suggested Citation

  • Ballestrín, Jesús & Polo, Jesús & Martín-Chivelet, Nuria & Barbero, Javier & Carra, Elena & Alonso-Montesinos, Joaquín & Marzo, Aitor, 2022. "Soiling forecasting of solar plants: A combined heuristic approach and autoregressive model," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026918
    DOI: 10.1016/j.energy.2021.122442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221026918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A. & Agathokleous, Rafaela & Panayiotou, Gregoris, 2013. "On-site PV characterization and the effect of soiling on their performance," Energy, Elsevier, vol. 51(C), pages 439-446.
    2. Festa, R. & Jain, S. & Ratto, C.F., 1992. "Stochastic modelling of daily global irradiation," Renewable Energy, Elsevier, vol. 2(1), pages 23-34.
    3. Alonso-Montesinos, J. & Monterreal, R. & Fernández-Reche, J. & Ballestrín, J. & Carra, E. & Polo, J. & Barbero, J. & Batlles, F.J. & López, G. & Enrique, R. & Martínez-Durbán, M. & Marzo, A., 2019. "Intra-hour energy potential forecasting in a central solar power plant receiver combining Meteosat images and atmospheric extinction," Energy, Elsevier, vol. 188(C).
    4. Adinoyi, Muhammed J. & Said, Syed A.M., 2013. "Effect of dust accumulation on the power outputs of solar photovoltaic modules," Renewable Energy, Elsevier, vol. 60(C), pages 633-636.
    5. van Haaren, Rob & Morjaria, Mahesh & Fthenakis, Vasilis, 2015. "An energy storage algorithm for ramp rate control of utility scale PV (photovoltaics) plants," Energy, Elsevier, vol. 91(C), pages 894-902.
    6. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    7. You, Siming & Lim, Yu Jie & Dai, Yanjun & Wang, Chi-Hwa, 2018. "On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities," Applied Energy, Elsevier, vol. 228(C), pages 1136-1146.
    8. Bouaddi, S. & Ihlal, A. & Fernández-García, A., 2017. "Comparative analysis of soiling of CSP mirror materials in arid zones," Renewable Energy, Elsevier, vol. 101(C), pages 437-449.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson, Cody B. & Picotti, Giovanni & Cholette, Michael E. & Leslie, Bruce & Steinberg, Theodore A. & Manzolini, Giampaolo, 2023. "Heliostat-field soiling predictions and cleaning resource optimization for solar tower plants," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    3. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    4. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    5. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    6. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Dhaouadi, Rached & Al-Othman, Amani & Aidan, Ahmed A. & Tawalbeh, Muhammad & Zannerni, Rawan, 2021. "A characterization study for the properties of dust particles collected on photovoltaic (PV) panels in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 171(C), pages 133-140.
    8. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    9. Hanifi, Hamed & Pander, Matthias & Zeller, Ulli & Ilse, Klemens & Dassler, David & Mirza, Mark & Bahattab, Mohammed A. & Jaeckel, Bengt & Hagendorf, Christian & Ebert, Matthias & Gottschalg, Ralph & S, 2020. "Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions," Applied Energy, Elsevier, vol. 280(C).
    10. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    11. Micheli, Leonardo & Fernandez, Eduardo F. & Aguilera, Jorge T. & Almonacid, Florencia, 2020. "Economics of seasonal photovoltaic soiling and cleaning optimization scenarios," MPRA Paper 104104, University Library of Munich, Germany.
    12. Tanesab, Julius & Parlevliet, David & Whale, Jonathan & Urmee, Tania, 2018. "Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas," Renewable Energy, Elsevier, vol. 120(C), pages 401-412.
    13. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Optimizing wind barrier and photovoltaic array configuration in soiling mitigation," Renewable Energy, Elsevier, vol. 163(C), pages 225-236.
    14. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    15. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    16. Umar, Shayan & Waqas, Adeel & Tanveer, Waqas & Shahzad, Nadia & Janjua, Abdul Kashif & Dehghan, Maziar & Qureshi, Muhammad Salik & Shakir, Sehar, 2023. "A building integrated solar PV surface-cleaning setup to optimize the electricity output of PV modules in a polluted atmosphere," Renewable Energy, Elsevier, vol. 216(C).
    17. Conceição, Ricardo & Silva, Hugo G. & Fialho, Luis & Lopes, Francis M. & Collares-Pereira, Manuel, 2019. "PV system design with the effect of soiling on the optimum tilt angle," Renewable Energy, Elsevier, vol. 133(C), pages 787-796.
    18. Yu Jiang & Lin Lu, 2016. "Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV) Modules," Sustainability, MDPI, vol. 8(11), pages 1-9, October.
    19. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).
    20. Dávid Matusz-Kalász & István Bodnár, 2021. "Operation Problems of Solar Panel Caused by the Surface Contamination," Energies, MDPI, vol. 14(17), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.