IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v67y2004i4p299-306.html
   My bibliography  Save this article

First-order seasonal autoregressive processes with periodically varying parameters

Author

Listed:
  • Basawa, I. V.
  • Lund, Robert
  • Shao, Qin

Abstract

A time series model combining a first-order periodic autoregressive structure and the Box-Jenkins multiplicative seasonal autoregressive model is introduced. Stationarity conditions (in the periodic sense) for this so-called SPAR(1,1) process are established and its autocovariances are derived. Least-squares estimates of the model parameters are obtained and their limit distribution is derived. An extension to higher-order SPARMA models is suggested.

Suggested Citation

  • Basawa, I. V. & Lund, Robert & Shao, Qin, 2004. "First-order seasonal autoregressive processes with periodically varying parameters," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 299-306, May.
  • Handle: RePEc:eee:stapro:v:67:y:2004:i:4:p:299-306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00058-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
    2. Parzen, Emanuel & Pagano, Marcello, 1979. "An approach to modeling seasonally stationary time series," Journal of Econometrics, Elsevier, vol. 9(1-2), pages 137-153, January.
    3. I. V. Basawa & Robert Lund, 2001. "Large Sample Properties of Parameter Estimates for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 651-663, November.
    4. George E. P. Box & Steven Hillmer & George C. Tiao, 1979. "Analysis and Modeling of Seasonal Time Series," NBER Chapters, in: Seasonal Analysis of Economic Time Series, pages 309-346, National Bureau of Economic Research, Inc.
    5. Peter Bloomfield & Harry L. Hurd & Robert B. Lund, 1994. "Periodic Correlation In Stratospheric Ozone Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 127-150, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eugen Ursu & Pierre Duchesne, 2009. "Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 183-212, May.
    2. Paul L. Anderson & Farzad Sabzikar & Mark M. Meerschaert, 2021. "Parsimonious time series modeling for high frequency climate data," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 442-470, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
    2. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    3. Qin Shao & Robert Lund, 2004. "Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 359-372, May.
    4. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    5. Aleksandra Grzesiek & Prashant Giri & S. Sundar & Agnieszka WyŁomańska, 2020. "Measures of Cross‐Dependence for Bidimensional Periodic AR(1) Model with α‐Stable Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 785-807, November.
    6. Jiajie Kong & Robert Lund, 2023. "Seasonal count time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 93-124, January.
    7. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    8. Bentarzi, Mohamed, 1998. "Model-Building Problem of Periodically Correlatedm-Variate Moving Average Processes," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 1-21, July.
    9. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    10. Caporin, Massimiliano & Preś, Juliusz, 2012. "Modelling and forecasting wind speed intensity for weather risk management," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3459-3476.
    11. Abdelouahab Bibi & Christian Francq, 2003. "Consistent and asymptotically normal estimators for cyclically time-dependent linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 41-68, March.
    12. Sarnaglia, A.J.Q. & Reisen, V.A. & Lévy-Leduc, C., 2010. "Robust estimation of periodic autoregressive processes in the presence of additive outliers," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2168-2183, October.
    13. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    14. Shao, Q. & Ni, P.P., 2004. "Least-squares estimation and ANOVA for periodic autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 287-297, September.
    15. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    16. Anderson, Paul L. & Kavalieris, Laimonis & Meerschaert, Mark M., 2008. "Innovations algorithm asymptotics for periodically stationary time series with heavy tails," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 94-116, January.
    17. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    18. Łukasz Lenart & Błażej Mazur, 2016. "On Bayesian Inference for Almost Periodic in Mean Autoregressive Models," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 1, pages 255-272, University of Lodz.
    19. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    20. Shao, Q., 2006. "Mixture periodic autoregressive time series models," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 609-618, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:67:y:2004:i:4:p:299-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.