IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v25y2004i3p359-372.html
   My bibliography  Save this article

Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models

Author

Listed:
  • Qin Shao
  • Robert Lund

Abstract

This paper studies correlation and partial autocorrelation properties of periodic autoregressive moving‐average (PARMA) time series models. An efficient algorithm to compute PARMA autocovariances is first derived. An innovations based algorithm to compute partial autocorrelations for a general periodic series is then developed. Finally, periodic moving averages and autoregressions are characterized as periodically stationary series whose autocovariances and partial autocorrelations, respectively, are zero at all lags that exceed some periodically varying threshold.

Suggested Citation

  • Qin Shao & Robert Lund, 2004. "Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 359-372, May.
  • Handle: RePEc:bla:jtsera:v:25:y:2004:i:3:p:359-372
    DOI: 10.1111/j.1467-9892.2004.00356.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2004.00356.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2004.00356.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Parzen, Emanuel & Pagano, Marcello, 1979. "An approach to modeling seasonally stationary time series," Journal of Econometrics, Elsevier, vol. 9(1-2), pages 137-153, January.
    2. Mohamed Bentarzi & Marc Hallin, 1994. "On The Invertibility Of Periodic Moving‐Average Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(3), pages 263-268, May.
    3. Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
    4. Hurd, H. L., 1989. "Representation of strongly harmonizable periodically correlated processes and their covariances," Journal of Multivariate Analysis, Elsevier, vol. 29(1), pages 53-67, April.
    5. Peter Bloomfield & Harry L. Hurd & Robert B. Lund, 1994. "Periodic Correlation In Stratospheric Ozone Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 127-150, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    2. Shao, Q., 2006. "Mixture periodic autoregressive time series models," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 609-618, March.
    3. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    4. Aleksandra Grzesiek & Prashant Giri & S. Sundar & Agnieszka WyŁomańska, 2020. "Measures of Cross‐Dependence for Bidimensional Periodic AR(1) Model with α‐Stable Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 785-807, November.
    5. Paul L. Anderson & Farzad Sabzikar & Mark M. Meerschaert, 2021. "Parsimonious time series modeling for high frequency climate data," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 442-470, July.
    6. Jiajie Kong & Robert Lund, 2023. "Seasonal count time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 93-124, January.
    7. Soumya Das & Marc G. Genton & Yasser M. Alshehri & Georgiy L. Stenchikov, 2021. "A cyclostationary model for temporal forecasting and simulation of solar global horizontal irradiance," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    8. ŁUkasz Lenart & Jacek Leśkow & Rafał Synowiecki, 2008. "Subsampling in testing autocovariance for periodically correlated time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 995-1018, November.
    9. Shao, Q. & Ni, P.P., 2004. "Least-squares estimation and ANOVA for periodic autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 287-297, September.
    10. Anderson, Paul L. & Kavalieris, Laimonis & Meerschaert, Mark M., 2008. "Innovations algorithm asymptotics for periodically stationary time series with heavy tails," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 94-116, January.
    11. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basawa, I. V. & Lund, Robert & Shao, Qin, 2004. "First-order seasonal autoregressive processes with periodically varying parameters," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 299-306, May.
    2. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
    3. Łukasz Lenart & Błażej Mazur, 2016. "On Bayesian Inference for Almost Periodic in Mean Autoregressive Models," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 1, pages 255-272, University of Lodz.
    4. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    5. Bentarzi, Mohamed, 1998. "Model-Building Problem of Periodically Correlatedm-Variate Moving Average Processes," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 1-21, July.
    6. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    7. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    8. Aleksandra Grzesiek & Prashant Giri & S. Sundar & Agnieszka WyŁomańska, 2020. "Measures of Cross‐Dependence for Bidimensional Periodic AR(1) Model with α‐Stable Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 785-807, November.
    9. Łukasz Lenart & Mateusz Pipień, 2015. "Empirical Properties of the Credit and Equity Cycle within Almost Periodically Correlated Stochastic Processes - the Case of Poland, UK and USA," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 7(3), pages 169-186, September.
    10. Abdelouahab Bibi & Christian Francq, 2003. "Consistent and asymptotically normal estimators for cyclically time-dependent linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 41-68, March.
    11. Sarnaglia, A.J.Q. & Reisen, V.A. & Lévy-Leduc, C., 2010. "Robust estimation of periodic autoregressive processes in the presence of additive outliers," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2168-2183, October.
    12. Hurd, H. & Makagon, A. & Miamee, A. G., 0. "On AR(1) models with periodic and almost periodic coefficients," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 167-185, July.
    13. Jiajie Kong & Robert Lund, 2023. "Seasonal count time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 93-124, January.
    14. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    15. Domenico Cucina & Manuel Rizzo & Eugen Ursu, 2018. "Identification of multiregime periodic autotregressive models by genetic algorithms," Post-Print hal-03187870, HAL.
    16. Paul L. Anderson & Farzad Sabzikar & Mark M. Meerschaert, 2021. "Parsimonious time series modeling for high frequency climate data," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 442-470, July.
    17. Mitra Ghanbarzadeh & Mina Aminghafari, 2016. "A Wavelet Characterization of Continuous-Time Periodically Correlated Processes with Application to Simulation," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 741-762, November.
    18. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    19. L. Tang & Q. Shao, 2014. "Efficient Estimation For Periodic Autoregressive Coefficients Via Residuals," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 378-389, July.
    20. Philip Hans Franses & Richard Paap, 2011. "Random‐coefficient periodic autoregressions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 101-115, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:25:y:2004:i:3:p:359-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.