IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i9p4287-4304.html
   My bibliography  Save this article

Aggregation and systematic sampling of periodic ARMA processes

Author

Listed:
  • Roy, Roch
  • Saidi, Abdessamad

Abstract

The aim of this work is to investigate the effects of temporal aggregation and systematic sampling on periodic autoregressive moving average (PARMA) time series. Firstly, it is shown that the class of weak PARMA processes, i.e. with uncorrelated but possibly dependent errors, is closed under a particular class of linear transformations that include both temporal aggregation and systematic sampling. This extends a similar result for autoregressive moving average processes; see [Wei, W.W.S., 2006. Time Series Analysis: Univariate and Multivariate Methods, second ed. Addison-Wesley, New York (Chapter 20)] for a review on the subject. Secondly, the properties of the noise of the transformed process are investigated. A sufficient condition is given under which aggregation and systematic sampling of a strong PARMA process, i.e. with independent errors, give rise in general to a weak PARMA process. Under that condition, the noise of the transformed process is neither strong nor a martingale difference. This result points out that the assumption of strong PARMA should not be used without careful considerations when analyzing aggregated time series that naturally occur in many scientific fields. The sufficient condition for non-independent errors is illustrated with the PARMA(1,1) model. A simulation study underlines the practical relevance of our findings and the importance of taking into account the dependence of the errors when fitting a PARMA model to an aggregated time series.

Suggested Citation

  • Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:9:p:4287-4304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00064-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parzen, Emanuel & Pagano, Marcello, 1979. "An approach to modeling seasonally stationary time series," Journal of Econometrics, Elsevier, vol. 9(1-2), pages 137-153, January.
    2. I. V. Basawa & Robert Lund, 2001. "Large Sample Properties of Parameter Estimates for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 651-663, November.
    3. Francq, Christian & Zakoïan, Jean-Michel, 2000. "Estimating Weak Garch Representations," Econometric Theory, Cambridge University Press, vol. 16(5), pages 692-728, October.
    4. Paul L. Anderson & Mark M. Meerschaert, 2005. "Parameter Estimation for Periodically Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 489-518, July.
    5. repec:bla:jtsera:v:25:y:2004:3:p:359-372 is not listed on IDEAS
    6. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
    7. Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
    8. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, September.
    9. Paulo Teles & William W. S. Wei, 2002. "The Use of Aggregate Time Series in Testing for Gaussianity," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(1), pages 95-116, January.
    10. Qin Shao & Robert Lund, 2004. "Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 359-372, May.
    11. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
    12. Teles, Paulo & Wei, William W. S., 2000. "The effects of temporal aggregation on tests of linearity of a time series," Computational Statistics & Data Analysis, Elsevier, vol. 34(1), pages 91-103, July.
    13. Peter Bloomfield & Harry L. Hurd & Robert B. Lund, 1994. "Periodic Correlation In Stratospheric Ozone Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 127-150, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caporin, Massimiliano & Preś, Juliusz, 2012. "Modelling and forecasting wind speed intensity for weather risk management," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3459-3476.
    2. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    2. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    3. Aleksandra Grzesiek & Prashant Giri & S. Sundar & Agnieszka WyŁomańska, 2020. "Measures of Cross‐Dependence for Bidimensional Periodic AR(1) Model with α‐Stable Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 785-807, November.
    4. Jiajie Kong & Robert Lund, 2023. "Seasonal count time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 93-124, January.
    5. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    6. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    7. Basawa, I. V. & Lund, Robert & Shao, Qin, 2004. "First-order seasonal autoregressive processes with periodically varying parameters," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 299-306, May.
    8. Anderson, Paul L. & Kavalieris, Laimonis & Meerschaert, Mark M., 2008. "Innovations algorithm asymptotics for periodically stationary time series with heavy tails," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 94-116, January.
    9. Paul L. Anderson & Farzad Sabzikar & Mark M. Meerschaert, 2021. "Parsimonious time series modeling for high frequency climate data," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 442-470, July.
    10. Philip Hans Franses & Richard Paap, 2011. "Random‐coefficient periodic autoregressions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 101-115, February.
    11. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    12. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    13. Shao, Q. & Ni, P.P., 2004. "Least-squares estimation and ANOVA for periodic autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 287-297, September.
    14. Qin Shao & Robert Lund, 2004. "Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 359-372, May.
    15. Lenart, Łukasz, 2013. "Non-parametric frequency identification and estimation in mean function for almost periodically correlated time series," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 252-269.
    16. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    17. Sarnaglia, A.J.Q. & Reisen, V.A. & Lévy-Leduc, C., 2010. "Robust estimation of periodic autoregressive processes in the presence of additive outliers," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2168-2183, October.
    18. Franses, Philip Hans, 2013. "Data revisions and periodic properties of macroeconomic data," Economics Letters, Elsevier, vol. 120(2), pages 139-141.
    19. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    20. Politis, Dimitris, 2016. "HEGY test under seasonal heterogeneity," University of California at San Diego, Economics Working Paper Series qt2q4054kf, Department of Economics, UC San Diego.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:9:p:4287-4304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.