IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v233y2024ics096014812401187x.html
   My bibliography  Save this article

Techno-economic assessment and transient modeling of a solar-based multi-generation system for sustainable/clean coastal urban development

Author

Listed:
  • Zhou, Xiao
  • Ding, Chunliang
  • Abed, Azher M.
  • Abdullaev, Sherzod
  • Ahmad, Sayed Fayaz
  • Fouad, Yasser
  • Dahari, Mahidzal
  • Mahariq, Ibrahim

Abstract

To ensure the health of vulnerable coastal ecosystems, a transition to sustainable energy solutions is essential. Environmentally friendly systems powered by renewable sources offer not only a reduction in pollution but also the adaptability needed for a flexible and resilient energy future. This study proposes and comprehensively evaluates an integrated solar-based system designed to meet the daily needs of coastal cities. The proposed system incorporates key components such as dual-loop power cycles, parabolic trough solar collectors, liquefied natural gas (LNG) regasification, reverse osmosis, and proton exchange membrane electrolysis. To optimize energy utilization, the inclusion of a thermoelectric generator (TEG) is considered, harnessing the thermal gradient among the LNG stream and the power cycle fluid. We conduct transient modeling, incorporating comprehensive scenarios that account for both thermal and economic aspects. The performance evaluation of the system focuses specifically on coastal regions, with San Francisco serving as a case study. The dynamic simulation results demonstrate the capability of the integrated system in fulfilling the urban needs for one year, delivering 1,134,207 cubic meters of potable water and generating 11,306 MWh of electricity. Financial analysis reveals that the solar unit accounts for over 46 % of the total cost, with an hourly cost rate of $69.61. The levelized cost of electricity is predicted at 4.61 cents/kWh, while the levelized cost of water is calculated at 30.54 cents/m3. These findings provide valuable insights into the cost-effectiveness and competitive advantage of the system in terms of energy and water production.

Suggested Citation

  • Zhou, Xiao & Ding, Chunliang & Abed, Azher M. & Abdullaev, Sherzod & Ahmad, Sayed Fayaz & Fouad, Yasser & Dahari, Mahidzal & Mahariq, Ibrahim, 2024. "Techno-economic assessment and transient modeling of a solar-based multi-generation system for sustainable/clean coastal urban development," Renewable Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:renene:v:233:y:2024:i:c:s096014812401187x
    DOI: 10.1016/j.renene.2024.121119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401187X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:233:y:2024:i:c:s096014812401187x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.