IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v185y2022icp888-903.html
   My bibliography  Save this article

Energy and exergy analyses of a hybrid system integrating solar-driven organic Rankine cycle, multi-effect distillation, and reverse osmosis desalination systems

Author

Listed:
  • Naminezhad, Alireza
  • Mehregan, Mahmood

Abstract

This study analyzes the energy and exergy of a novel arrangement of a solar driven organic Rankine cycle (ORC), two reverse osmosis (RO) desalination systems, and a multi-effect distillation (MED) desalination unit. The ORC power is used as power sources of the high-pressure pump of the RO unit and pumping system of the MED unit. Also, the waste heat of the ORC condenser is utilized as the heat impetus of the MED unit. The results demonstrate that increasing the solar radiation intensity and collector module length leads to increase in the ORC power output, produced freshwater, and total exergy destruction. Increasing the volumetric flow rate of the collector reduces the temperature of the output fluid from the solar collector field, but the mass flow rate is increased, resulting in the highest net output power from the ORC system at a volume flow rate of 11000 lit/min. The exergy analysis reveals that the solar collector, as the system heat source, has the highest total exergy destruction share of 65% in the system. Also, among the organic fluids, toluene, n-decane, n-nonane and n-octane have the highest ORC power, the highest amount of produced freshwater, and the least exergy destruction for ORC, respectively.

Suggested Citation

  • Naminezhad, Alireza & Mehregan, Mahmood, 2022. "Energy and exergy analyses of a hybrid system integrating solar-driven organic Rankine cycle, multi-effect distillation, and reverse osmosis desalination systems," Renewable Energy, Elsevier, vol. 185(C), pages 888-903.
  • Handle: RePEc:eee:renene:v:185:y:2022:i:c:p:888-903
    DOI: 10.1016/j.renene.2021.12.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121017961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yari, Mortaza & Ariyanfar, Leyli & Aghdam, Ebrahim Abdi, 2018. "Analysis and performance assessment of a novel ORC based multi-generation system for power, distilled water and heat," Renewable Energy, Elsevier, vol. 119(C), pages 262-281.
    2. Ghaebi, Hadi & Rostamzadeh, Hadi, 2020. "Performance comparison of two new cogeneration systems for freshwater and power production based on organic Rankine and Kalina cycles driven by salinity-gradient solar pond," Renewable Energy, Elsevier, vol. 156(C), pages 748-767.
    3. Baccioli, A. & Antonelli, M. & Desideri, U. & Grossi, A., 2018. "Thermodynamic and economic analysis of the integration of Organic Rankine Cycle and Multi-Effect Distillation in waste-heat recovery applications," Energy, Elsevier, vol. 161(C), pages 456-469.
    4. Khanarmuei, Mohammadreza & Ahmadisedigh, Hossein & Ebrahimi, Iman & Gosselin, Louis & Mokhtari, Hamid, 2017. "Comparative design of plug and recirculation RO systems; thermoeconomic: Case study," Energy, Elsevier, vol. 121(C), pages 205-219.
    5. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    6. You, Huailiang & Han, Jitian & Liu, Yang, 2019. "Performance assessment of a CCHP and multi-effect desalination system based on GT/ORC with inlet air precooling," Energy, Elsevier, vol. 185(C), pages 286-298.
    7. Ameri, Mohammad & Mokhtari, Hamid & Mostafavi Sani, Mostafa, 2018. "4E analyses and multi-objective optimization of different fuels application for a large combined cycle power plant," Energy, Elsevier, vol. 156(C), pages 371-386.
    8. Mokhtari, Hamid & Hadiannasab, Hasti & Mostafavi, Mostafa & Ahmadibeni, Ali & Shahriari, Behrooz, 2016. "Determination of optimum geothermal Rankine cycle parameters utilizing coaxial heat exchanger," Energy, Elsevier, vol. 102(C), pages 260-275.
    9. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiao & Ding, Chunliang & Abed, Azher M. & Abdullaev, Sherzod & Ahmad, Sayed Fayaz & Fouad, Yasser & Dahari, Mahidzal & Mahariq, Ibrahim, 2024. "Techno-economic assessment and transient modeling of a solar-based multi-generation system for sustainable/clean coastal urban development," Renewable Energy, Elsevier, vol. 233(C).
    2. Assareh, Ehsanolah & Karimi birgani, Kaveh & Agarwal, Neha & Arabkoohsar, Ahmad & Ghodrat, Maryam & Lee, Moonyong, 2023. "A transient study on a solar-assisted combined gas power cycle for sustainable multi-generation in hot and cold climates: Case studies of Dubai and Toronto," Energy, Elsevier, vol. 282(C).
    3. Ehtiwesh, Amin & Kutlu, Cagri & Su, Yuehong & Riffat, Saffa, 2023. "Modelling and performance evaluation of a direct steam generation solar power system coupled with steam accumulator to meet electricity demands for a hospital under typical climate conditions in Libya," Renewable Energy, Elsevier, vol. 206(C), pages 795-807.
    4. Su, Zixiang & Yang, Liu & Wang, Hao & Song, Jianzhong & Jiang, Weixue, 2024. "Exergoenvironmental optimization and thermoeconomic assessment of an innovative multistage Brayton cycle with dual expansion and cooling for ultra-high temperature solar power," Energy, Elsevier, vol. 286(C).
    5. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    6. Balali, Adel & Asadabadi, Mohammad Javad Raji & Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Moghimi, Mahdi, 2023. "Development and neural network optimization of a renewable-based system for hydrogen production and desalination," Renewable Energy, Elsevier, vol. 218(C).
    7. Su, Zixiang & Yang, Liu, 2022. "Peak shaving strategy for renewable hybrid system driven by solar and radiative cooling integrating carbon capture and sewage treatment," Renewable Energy, Elsevier, vol. 197(C), pages 1115-1132.
    8. Khan, Muhammad Sajid & Huan, Qun & Yan, Mi & Ali, Mustajab & Noor, Obaid Ullah & Abid, Muhammad, 2022. "A novel configuration of solar integrated waste-to-energy incineration plant for multi-generational purpose: An effort for achieving maximum performance," Renewable Energy, Elsevier, vol. 194(C), pages 604-620.
    9. Sun, Wen & Feng, Li & Abed, Azher M. & Sharma, Aman & Arsalanloo, Akbar, 2022. "Thermoeconomic assessment of a renewable hybrid RO/PEM electrolyzer integrated with Kalina cycle and solar dryer unit using response surface methodology (RSM)," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    2. Manassaldi, Juan I. & Mussati, Miguel C. & Scenna, Nicolás J. & Morosuk, Tatiana & Mussati, Sergio F., 2021. "Process optimization and revamping of combined-cycle heat and power plants integrated with thermal desalination processes," Energy, Elsevier, vol. 233(C).
    3. Desai, Nishith B. & Pranov, Henrik & Haglind, Fredrik, 2021. "Techno-economic analysis of a foil-based solar collector driven electricity and fresh water generation system," Renewable Energy, Elsevier, vol. 165(P1), pages 642-656.
    4. Mostafavi Sani, Mostafa & Mostafavi Sani, Hossein & Fowler, Michael & Elkamel, Ali & Noorpoor, Alireza & Ghasemi, Amir, 2022. "Optimal energy hub development to supply heating, cooling, electricity and freshwater for a coastal urban area taking into account economic and environmental factors," Energy, Elsevier, vol. 238(PB).
    5. Mostafavi Sani, Mostafa & Noorpoor, Alireza & Shafie-Pour Motlagh, Majid, 2019. "Optimal model development of energy hub to supply water, heating and electrical demands of a cement factory," Energy, Elsevier, vol. 177(C), pages 574-592.
    6. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
    7. Bademlioglu, A.H. & Canbolat, A.S. & Kaynakli, O., 2020. "Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    9. Roumpedakis, Tryfon C. & Loumpardis, George & Monokrousou, Evropi & Braimakis, Konstantinos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic and economic analysis of a solar driven small scale ORC," Renewable Energy, Elsevier, vol. 157(C), pages 1008-1024.
    10. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    11. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    12. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    13. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    14. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    15. Ghorbani, Bahram & Salehi, Gholamreza & Ebrahimi, Armin & Taghavi, Masoud, 2021. "Energy, exergy and pinch analyses of a novel energy storage structure using post-combustion CO2 separation unit, dual pressure Linde-Hampson liquefaction system, two-stage organic Rankine cycle and ge," Energy, Elsevier, vol. 233(C).
    16. Abrosimov, Kirill & Baccioli, Andrea & Bischi, Aldo, 2020. "Extensive techno-economic assessment of combined inverted Brayton – Organic Rankine cycle for high-temperature waste heat recovery," Energy, Elsevier, vol. 211(C).
    17. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2018. "A two-level decision making approach for optimal integrated urban water and energy management," Energy, Elsevier, vol. 155(C), pages 408-425.
    18. Gordon, David & Bolisetti, Tirupati & Ting, David S-K. & Reitsma, Stanley, 2018. "Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 115(C), pages 946-953.
    19. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    20. Alimonti, C. & Soldo, E. & Bocchetti, D. & Berardi, D., 2018. "The wellbore heat exchangers: A technical review," Renewable Energy, Elsevier, vol. 123(C), pages 353-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:185:y:2022:i:c:p:888-903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.