IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v233y2024ics0960148124011261.html
   My bibliography  Save this article

Short-term solar irradiance forecasting under data transmission constraints

Author

Listed:
  • Hammond, Joshua E.
  • Lara Orozco, Ricardo A.
  • Baldea, Michael
  • Korgel, Brian A.

Abstract

We report a data-parsimonious machine learning model for short-term forecasting of solar irradiance. The model follows the convolutional neural network – long-short term memory architecture. Its inputs include sky camera images that are reduced to scalar features to meet data transmission constraints. The model focuses on predicting the deviation of irradiance from the persistence of cloudiness (POC) model. Inspired by control theory, a noise signal input is used to capture the presence of unknown and/or unmeasured input variables and is shown to improve model predictions, often considerably. Five years of data from the NREL Solar Radiation Research Laboratory were used to create three rolling train-validate sets and determine the best representations for time, the optimal span of input measurements, and the most impactful model input data (features). For the chosen validation data, the model achieves a mean absolute error of 74.29 W/m2over a time horizon of up to two hours, compared to a baseline 134.35 W/m2 using the POC model.

Suggested Citation

  • Hammond, Joshua E. & Lara Orozco, Ricardo A. & Baldea, Michael & Korgel, Brian A., 2024. "Short-term solar irradiance forecasting under data transmission constraints," Renewable Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124011261
    DOI: 10.1016/j.renene.2024.121058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clauzel, Léo & Anquetin, Sandrine & Lavaysse, Christophe & Tremoy, Guillaume & Raynaud, Damien, 2024. "West African operational daily solar forecast errors and their link with meteorological conditions," Renewable Energy, Elsevier, vol. 224(C).
    2. Liu, Guanjun & Qin, Hui & Shen, Qin & Lyv, Hao & Qu, Yuhua & Fu, Jialong & Liu, Yongqi & Zhou, Jianzhong, 2021. "Probabilistic spatiotemporal solar irradiation forecasting using deep ensembles convolutional shared weight long short-term memory network," Applied Energy, Elsevier, vol. 300(C).
    3. Martins, Guilherme Santos & Giesbrecht, Mateus, 2023. "Hybrid approaches based on Singular Spectrum Analysis and k- Nearest Neighbors for clearness index forecasting," Renewable Energy, Elsevier, vol. 219(P1).
    4. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    5. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
    6. Bett, Philip E. & Thornton, Hazel E., 2016. "The climatological relationships between wind and solar energy supply in Britain," Renewable Energy, Elsevier, vol. 87(P1), pages 96-110.
    7. Wen, Haoran & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Wen, Huiqing & Yan, Ke, 2023. "A regional solar forecasting approach using generative adversarial networks with solar irradiance maps," Renewable Energy, Elsevier, vol. 216(C).
    8. Alexandre K. Magnan & Hans-Otto Pörtner & Virginie K. E. Duvat & Matthias Garschagen & Valeria A. Guinder & Zinta Zommers & Ove Hoegh-Guldberg & Jean-Pierre Gattuso, 2021. "Estimating the global risk of anthropogenic climate change," Nature Climate Change, Nature, vol. 11(10), pages 879-885, October.
    9. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
    10. Liu, Jingxuan & Zang, Haixiang & Ding, Tao & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2023. "Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 209(C), pages 619-631.
    11. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Feng, Cong & Zhang, Jie & Zhang, Wenqi & Hodge, Bri-Mathias, 2022. "Convolutional neural networks for intra-hour solar forecasting based on sky image sequences," Applied Energy, Elsevier, vol. 310(C).
    13. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).
    14. Haider, Syed Altan & Sajid, Muhammad & Sajid, Hassan & Uddin, Emad & Ayaz, Yasar, 2022. "Deep learning and statistical methods for short- and long-term solar irradiance forecasting for Islamabad," Renewable Energy, Elsevier, vol. 198(C), pages 51-60.
    15. Ogliari, Emanuele & Sakwa, Maciej & Cusa, Paolo, 2024. "Enhanced Convolutional Neural Network for solar radiation nowcasting: All-Sky camera infrared images embedded with exogeneous parameters," Renewable Energy, Elsevier, vol. 221(C).
    16. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
    2. Xie, Qiyue & Ma, Lin & Liu, Yao & Fu, Qiang & Shen, Zhongli & Wang, Xiaoli, 2023. "An improved SSA-BiLSTM-based short-term irradiance prediction model via sky images feature extraction," Renewable Energy, Elsevier, vol. 219(P2).
    3. Liao, Zhouyi & Coimbra, Carlos F.M., 2024. "Hybrid solar irradiance nowcasting and forecasting with the SCOPE method and convolutional neural networks," Renewable Energy, Elsevier, vol. 232(C).
    4. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    5. Elizabeth Michael, Neethu & Hasan, Shazia & Al-Durra, Ahmed & Mishra, Manohar, 2022. "Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network," Applied Energy, Elsevier, vol. 324(C).
    6. Azizi, Narjes & Yaghoubirad, Maryam & Farajollahi, Meisam & Ahmadi, Abolfzl, 2023. "Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output," Renewable Energy, Elsevier, vol. 206(C), pages 135-147.
    7. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    8. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    9. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    10. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    11. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    12. Lilla Barancsuk & Veronika Groma & Dalma Günter & János Osán & Bálint Hartmann, 2024. "Estimation of Solar Irradiance Using a Neural Network Based on the Combination of Sky Camera Images and Meteorological Data," Energies, MDPI, vol. 17(2), pages 1-25, January.
    13. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    14. Ary José A. Souza-Jr., 2022. "Subjective well-being and climate change: Evidence for Portugal," Working Papers REM 2022/0213, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    15. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    16. Vinel, Alexander & Mortaz, Ebrahim, 2019. "Optimal pooling of renewable energy sources with a risk-averse approach: Implications for US energy portfolio," Energy Policy, Elsevier, vol. 132(C), pages 928-939.
    17. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    18. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    19. Mahdi Asadi & Iman Larki & Mohammad Mahdi Forootan & Rouhollah Ahmadi & Meisam Farajollahi, 2023. "Long-Term Scenario Analysis of Electricity Supply and Demand in Iran: Time Series Analysis, Renewable Electricity Development, Energy Efficiency and Conservation," Sustainability, MDPI, vol. 15(5), pages 1-24, March.
    20. Rémi Delage & Taichi Matsuoka & Toshihiko Nakata, 2021. "Spatial–Temporal Estimation and Analysis of Japan Onshore and Offshore Wind Energy Potential," Energies, MDPI, vol. 14(8), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124011261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.