IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224019261.html
   My bibliography  Save this article

A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting

Author

Listed:
  • Pei, Jingyin
  • Dong, Yunxuan
  • Guo, Pinghui
  • Wu, Thomas
  • Hu, Jianming

Abstract

Growing energy demand and increasing environmental challenges underscore the importance of precise forecasts for photovoltaic (PV) operations in renewable energy generation systems. At this stage, it is mainstream to combine both temporal and spatial factors to forecast PV power generation. However, there are fewer studies that consider factors at very large spatial scales. This paper proposes Hybrid Dual Stream ProbSparse Self-Attention Network (HDSPAN), a novel spatial–temporal photovoltaic power forecasting network architecture that can solve the above limitations. The model implements an encoder–decoder approach that extracts the required spatial–temporal information through a dual stream distilling mechanism. In addition, the ProbSparse self-attention mechanism is employed to improve model efficiency and reduce repetitive and redundant information processing. The hyperparameters are optimized using Tree-structured Patzen estimator to improve forecasting outcomes. This paper demonstrates the effectiveness of spatial–temporal PV forecasting by using ERA5 reanalyzed PV data as a case study. Our results show that the HDSPAN model achieves a 10% higher forecasting accuracy compared to the baseline models, significantly advancing PV power forecasting.

Suggested Citation

  • Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224019261
    DOI: 10.1016/j.energy.2024.132152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224019261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.