Author
Listed:
- Li, Ruohan
- Wang, Dongdong
- Wang, Zhihao
- Liang, Shunlin
- Li, Zhanqing
- Xie, Yiqun
- He, Jiena
Abstract
Unpredicted spatial and temporal variability of global horizontal irradiance (GHI) reaching the photovoltaic panels presents a challenge for integrating solar power into the grid stably and cost-effectively at a regional scale. Therefore, there is a recognized demand for large-scale GHI nowcasting that is both timely and accurate, an area where most existing studies fall short. This study introduces the SolarFormer model, which utilizes satellite data and incorporates a gated recurrent unit for near real-time GHI estimation. It also includes a space-time transformer to provide forecasts with a 3-h lead time at 15-min intervals, maintaining accuracy without significant degradation over extended lead times. SolarFormer requires only the selected satellite band information shared by GOES-16 and Himawari-8 as the dynamic input, enabling near-real-time application across all areas covered by these satellites. This feature makes it accessible and efficient for large-scale energy planning. We validate the forecasting result with the ground-measured GHI over seven SURFRAD stations in 2018. The model achieves an hourly prediction root-mean-square error (relative root-mean-square error) of 93.8 W/m2 (15.0 %), 118.9 W/m2 (19.8 %), and 129.1 W/m2 (24.2 %) with 1–3 h lead time respectively. These results demonstrate lower root-mean-square error compared to existing hourly updated numerical weather prediction modeling, such as High-Resolution Rapid Refresh, and deep learning models, such as ConvLSTM. Moreover, the study highlights the potential of SolarFormer for extended lead-time forecasting due to its high computation and memory efficiency compared with the above-mentioned models, potentially benefiting long-term energy planning and power market bidding and clearing. However, SolarFormer exhibits accumulated bias as the predicted lead time increases and faces challenges in predicting GHI in the early morning due to the invalid visible satellite bands during the night, suggesting areas for improvement in future studies.
Suggested Citation
Li, Ruohan & Wang, Dongdong & Wang, Zhihao & Liang, Shunlin & Li, Zhanqing & Xie, Yiqun & He, Jiena, 2025.
"Transformer approach to nowcasting solar energy using geostationary satellite data,"
Applied Energy, Elsevier, vol. 377(PA).
Handle:
RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017707
DOI: 10.1016/j.apenergy.2024.124387
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017707. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.