IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124011133.html
   My bibliography  Save this article

Thermal runaway front propagation characteristics, modeling and judging criteria for multi-jelly roll prismatic lithium-ion battery applications

Author

Listed:
  • Chen, Siqi
  • Wei, Xuezhe
  • Zhu, Zhehui
  • Wu, Hang
  • Ou, Yuxin
  • Zhang, Guangxu
  • Wang, Xueyuan
  • Zhu, Jiangong
  • Feng, Xuning
  • Dai, Haifeng
  • Ouyang, Minggao

Abstract

Large-format prismatic Li-ion batteries (LIBs) are prominent energy storage devices in electric transportation applications. However, large-format LIB induces severe thermal runaway (TR) disasters. Battery failure commonly initiates from a local point of one jelly roll and then propagates to the whole cell, called thermal runaway front (TRF) propagation. This study investigates the TRF propagation mechanism of multi-jelly roll-based LIBs through experiments, modeling, and theoretical analysis for thermal runaway propagation (TRP) mitigation. Experiments prove that battery venting changes along the jelly roll-safety valve directions during the TRF boundary movement. Besides, TRF propagation speed is found to be accelerated inside each cell (from 3.6 to 10.6 mm/s) during TRP, driven by a significant temperature gradient, chemical reactions, and gas flow along the TRP direction. The in-cell TRF acceleration behavior is more noticeable for batteries with more jelly rolls. The TRF speed-jelly roll index equations are proposed to reveal the propagation acceleration principle mathematically. Furthermore, a thermal-physical model is developed to precisely simulate in-cell TRF propagation behavior, which is validated by experimental data. Moreover, the TRF boundary temperature equation and “No TRP” judging criteria are proposed through theoretical analysis. This study proposes promising strategies for potential TRP suppression, contributing to future safe battery system design.

Suggested Citation

  • Chen, Siqi & Wei, Xuezhe & Zhu, Zhehui & Wu, Hang & Ou, Yuxin & Zhang, Guangxu & Wang, Xueyuan & Zhu, Jiangong & Feng, Xuning & Dai, Haifeng & Ouyang, Minggao, 2024. "Thermal runaway front propagation characteristics, modeling and judging criteria for multi-jelly roll prismatic lithium-ion battery applications," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124011133
    DOI: 10.1016/j.renene.2024.121045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124011133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.