IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p841-d139561.html
   My bibliography  Save this article

A Unique Failure Mechanism in the Nexus 6P Lithium-Ion Battery

Author

Listed:
  • Saurabh Saxena

    (Center for Advanced Life Cycle Engineering, University of Maryland, College Park, MD 20742, USA)

  • Yinjiao Xing

    (Center for Advanced Life Cycle Engineering, University of Maryland, College Park, MD 20742, USA)

  • Michael Pecht

    (Center for Advanced Life Cycle Engineering, University of Maryland, College Park, MD 20742, USA)

Abstract

Nexus 6P smartphones have been beset by battery drain issues, which have been causing premature shutdown of the phone even when the charge indicator displays a significant remaining runtime. To investigate the premature battery drain issue, two Nexus 6P smartphones (one new and one used) were disassembled and their batteries were evaluated using computerized tomography (CT) scan analysis, electrical performance (capacity, resistance, and impedance) tests, and cycle life capacity fade tests. The “used” smartphone battery delivered only 20% of the rated capacity when tested in a first capacity cycle and then 15% of the rated capacity in a second cycle. The new smartphone battery exceeded the rated capacity when first taken out of the box, but exhibited an accelerated capacity fade under C/2 rate cycling and decreased to 10% of its initial capacity in just 50 cycles. The CT scan results revealed the presence of contaminant materials inside the used battery, raising questions about the quality of the manufacturing process.

Suggested Citation

  • Saurabh Saxena & Yinjiao Xing & Michael Pecht, 2018. "A Unique Failure Mechanism in the Nexus 6P Lithium-Ion Battery," Energies, MDPI, vol. 11(4), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:841-:d:139561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donal P. Finegan & Mario Scheel & James B. Robinson & Bernhard Tjaden & Ian Hunt & Thomas J. Mason & Jason Millichamp & Marco Di Michiel & Gregory J. Offer & Gareth Hinds & Dan J.L. Brett & Paul R. Sh, 2015. "In-operando high-speed tomography of lithium-ion batteries during thermal runaway," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
    3. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
    4. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    5. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    6. Yi Wu & Saurabh Saxena & Yinjiao Xing & Youren Wang & Chuan Li & Winco K. C. Yung & Michael Pecht, 2018. "Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography," Energies, MDPI, vol. 11(4), pages 1-22, April.
    7. Andreas Ziegler & David Oeser & Thiemo Hein & Daniel Montesinos-Miracle & Ansgar Ackva, 2020. "Run to Failure: Aging of Commercial Battery Cells beyond Their End of Life," Energies, MDPI, vol. 13(8), pages 1-11, April.
    8. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    9. Fransson, Matilda & Broche, Ludovic & Reid, Hamish T. & Patel, Drasti & Rack, Alexander & Shearing, Paul R., 2024. "Investigating thermal runaway dynamics and integrated safety mechanisms of micro-batteries using high-speed X-ray imaging," Applied Energy, Elsevier, vol. 369(C).
    10. Li, Yalun & Gao, Xinlei & Feng, Xuning & Ren, Dongsheng & Li, Yan & Hou, Junxian & Wu, Yu & Du, Jiuyu & Lu, Languang & Ouyang, Minggao, 2022. "Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging," Energy, Elsevier, vol. 239(PB).
    11. Rémy Richard Jacquemond & Maxime van der Heijden & Emre Burak Boz & Eric Ricardo Carreón Ruiz & Katharine Virginia Greco & Jeffrey Adam Kowalski & Vanesa Muñoz Perales & Fikile Richard Brushett & Kitt, 2024. "Quantifying concentration distributions in redox flow batteries with neutron radiography," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Kang, Zhuang & Peng, Qingguo & Yin, Ruixue & Yao, Zhengmin & Song, Yangyang & He, Biao, 2024. "Investigation of multifactorial effects on the thermal performance of battery pack inserted with multi-layer phase change materials," Energy, Elsevier, vol. 290(C).
    13. Craig, Ben & Schoetz, Theresa & Cruden, Andrew & Ponce de Leon, Carlos, 2020. "Review of current progress in non-aqueous aluminium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Wang, Haimin & Shi, Weijie & Hu, Feng & Wang, Yufei & Hu, Xuebin & Li, Huanqi, 2021. "Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode," Energy, Elsevier, vol. 224(C).
    15. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    16. Plunkett, Samuel T. & Chen, Chengxiu & Rojaee, Ramin & Doherty, Patrick & Sik Oh, Yun & Galazutdinova, Yana & Krishnamurthy, Mahesh & Al-Hallaj, Said, 2021. "Enhancing thermal safety in lithium-ion battery packs through parallel cell ‘current dumping’ mitigation," Applied Energy, Elsevier, vol. 286(C).
    17. Huang, Peifeng & Ping, Ping & Li, Ke & Chen, Haodong & Wang, Qingsong & Wen, Jennifer & Sun, Jinhua, 2016. "Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode," Applied Energy, Elsevier, vol. 183(C), pages 659-673.
    18. Yubai Li & Zhifu Zhou & Wei-Tao Wu, 2020. "Three-Dimensional Thermal Modeling of Internal Shorting Process in a 20Ah Lithium-Ion Polymer Battery," Energies, MDPI, vol. 13(4), pages 1-16, February.
    19. Xu, Bin & Lee, Jinwoo & Kwon, Daeil & Kong, Lingxi & Pecht, Michael, 2021. "Mitigation strategies for Li-ion battery thermal runaway: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Lingxi Kong & Chuan Li & Jiuchun Jiang & Michael G. Pecht, 2018. "Li-Ion Battery Fire Hazards and Safety Strategies," Energies, MDPI, vol. 11(9), pages 1-11, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:841-:d:139561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.