IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v370y2024ics0306261924010146.html
   My bibliography  Save this article

Online detection of lithium plating onset during constant and multistage constant current fast charging for lithium-ion batteries

Author

Listed:
  • Shen, Yudong
  • Wang, Xueyuan
  • Jiang, Zhao
  • Luo, Bingyin
  • Chen, Daidai
  • Wei, Xuezhe
  • Dai, Haifeng

Abstract

Lithium plating during the fast charging process significantly decreases the health and safety of lithium-ion batteries (LIBs). Hence, detecting the onset of lithium plating is essential to realize the highly effective and low-damage fast charging. However, an online lithium plating onset detection method that can be used in constant current (CC) and multiage constant current (MCC) fast charging under different working conditions without interrupting the charging process of LIBs has not been reported yet. To fill this gap, a novel method based on dynamic impedance measurement has been proposed. The abnormal drop of dynamic impedance at 1 Hz during the charging processes was treated as a universal feature of lithium plating onset. A method based on real-time impedance feedback and a long short-term memory (LSTM) was first proposed to identify this feature. It was validated in various CC and MCC charging rates at different temperatures and battery types. With the cross-validation of the voltage relaxation method, an error of <2.5% SOC in detecting the lithium plating onset was achieved. Besides, the proposed method effectively optimizes the misidentification and the time delay in detection. For practical applications, the method's accuracy and robustness were additionally validated in a rapid prototyping system. The method proposed in this paper solves the complex problem of lithium plating detection during the CC and MCC charging procedures, which is essential for improving the health and safety of LIBs under fast charging conditions.

Suggested Citation

  • Shen, Yudong & Wang, Xueyuan & Jiang, Zhao & Luo, Bingyin & Chen, Daidai & Wei, Xuezhe & Dai, Haifeng, 2024. "Online detection of lithium plating onset during constant and multistage constant current fast charging for lithium-ion batteries," Applied Energy, Elsevier, vol. 370(C).
  • Handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924010146
    DOI: 10.1016/j.apenergy.2024.123631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924010146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yongzhi & Xiong, Rui & He, Hongwen & Qu, Xiaobo & Pecht, Michael, 2019. "State of charge-dependent aging mechanisms in graphite/Li(NiCoAl)O2 cells: Capacity loss modeling and remaining useful life prediction," Applied Energy, Elsevier, vol. 255(C).
    2. Wang, Cong-jie & Zhu, Yan-li & Gao, Fei & Bu, Xin-ya & Chen, Heng-shuai & Quan, Ting & Xu, Yi-bo & Jiao, Qing-jie, 2022. "Internal short circuit and thermal runaway evolution mechanism of fresh and retired lithium-ion batteries with LiFePO4 cathode during overcharge," Applied Energy, Elsevier, vol. 328(C).
    3. Guo, Fei & Wu, Xiongwei & Liu, Lili & Ye, Jilei & Wang, Tao & Fu, Lijun & Wu, Yuping, 2023. "Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network," Energy, Elsevier, vol. 270(C).
    4. Yin, Yilin & Choe, Song-Yul, 2020. "Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control," Applied Energy, Elsevier, vol. 271(C).
    5. Ecker, Madeleine & Shafiei Sabet, Pouyan & Sauer, Dirk Uwe, 2017. "Influence of operational condition on lithium plating for commercial lithium-ion batteries – Electrochemical experiments and post-mortem-analysis," Applied Energy, Elsevier, vol. 206(C), pages 934-946.
    6. Ding, Zhixiong & Wu, Wei, 2021. "A hybrid compression-assisted absorption thermal battery with high energy storage density/efficiency and low charging temperature," Applied Energy, Elsevier, vol. 282(PA).
    7. Jalkanen, K. & Karppinen, J. & Skogström, L. & Laurila, T. & Nisula, M. & Vuorilehto, K., 2015. "Cycle aging of commercial NMC/graphite pouch cells at different temperatures," Applied Energy, Elsevier, vol. 154(C), pages 160-172.
    8. Sieg, Johannes & Schmid, Alexander U. & Rau, Laura & Gesterkamp, Andreas & Storch, Mathias & Spier, Bernd & Birke, Kai Peter & Sauer, Dirk Uwe, 2022. "Fast-charging capability of lithium-ion cells: Influence of electrode aging and electrolyte consumption," Applied Energy, Elsevier, vol. 305(C).
    9. Du, Jiuyu & Liu, Ye & Mo, Xinying & Li, Yalun & Li, Jianqiu & Wu, Xiaogang & Ouyang, Minggao, 2019. "Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles," Applied Energy, Elsevier, vol. 255(C).
    10. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    11. Mathieu, Romain & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2021. "Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures," Applied Energy, Elsevier, vol. 283(C).
    12. Gao, Xinlei & Li, Yalun & Wang, Huizhi & Liu, Xinhua & Wu, Yu & Yang, Shichun & Zhao, Zhengming & Ouyang, Minggao, 2023. "Probing inhomogeneity of electrical-thermal distribution on electrode during fast charging for lithium-ion batteries," Applied Energy, Elsevier, vol. 336(C).
    13. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    14. Hong, Jichao & Wang, Zhenpo & Yao, Yongtao, 2019. "Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Kriegler, Johannes & Hille, Lucas & Stock, Sandro & Kraft, Ludwig & Hagemeister, Jan & Habedank, Jan Bernd & Jossen, Andreas & Zaeh, Michael F., 2021. "Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes," Applied Energy, Elsevier, vol. 303(C).
    16. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    2. Sieg, Johannes & Schmid, Alexander U. & Rau, Laura & Gesterkamp, Andreas & Storch, Mathias & Spier, Bernd & Birke, Kai Peter & Sauer, Dirk Uwe, 2022. "Fast-charging capability of lithium-ion cells: Influence of electrode aging and electrolyte consumption," Applied Energy, Elsevier, vol. 305(C).
    3. He, Rong & He, Yongling & Xie, Wenlong & Guo, Bin & Yang, Shichun, 2023. "Comparative analysis for commercial li-ion batteries degradation using the distribution of relaxation time method based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 263(PD).
    4. Zhu, Juner & Zhang, Xiaowei & Luo, Hailing & Sahraei, Elham, 2018. "Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests," Applied Energy, Elsevier, vol. 224(C), pages 251-266.
    5. Zhou, Boru & Fan, Guodong & Wang, Yansong & Liu, Yisheng & Chen, Shun & Sun, Ziqiang & Meng, Chengwen & Yang, Jufeng & Zhang, Xi, 2024. "Life-extending optimal charging for lithium-ion batteries based on a multi-physics model and model predictive control," Applied Energy, Elsevier, vol. 361(C).
    6. Shunli Wang & Pu Ren & Paul Takyi-Aninakwa & Siyu Jin & Carlos Fernandez, 2022. "A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(14), pages 1-27, July.
    7. Angeles Cabañero, Maria & Altmann, Johannes & Gold, Lukas & Boaretto, Nicola & Müller, Jana & Hein, Simon & Zausch, Jochen & Kallo, Josef & Latz, Arnulf, 2019. "Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries," Energy, Elsevier, vol. 171(C), pages 1217-1228.
    8. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    9. Cui, Binghan & Wang, Han & Li, Renlong & Xiang, Lizhi & Zhao, Huaian & Xiao, Rang & Li, Sai & Liu, Zheng & Yin, Geping & Cheng, Xinqun & Ma, Yulin & Huo, Hua & Zuo, Pengjian & Lu, Taolin & Xie, Jingyi, 2024. "Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model," Applied Energy, Elsevier, vol. 353(PA).
    10. Hao Sun & Bo Jiang & Heze You & Bojian Yang & Xueyuan Wang & Xuezhe Wei & Haifeng Dai, 2021. "Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions," Energies, MDPI, vol. 14(2), pages 1-19, January.
    11. Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
    12. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    13. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    14. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    15. Fan Zeng & Chris Kwan Yu Lo & Stacy Hyun Nam Lee, 2021. "Will Communication of Job Creation Facilitate Diffusion of Innovations in the Automobile Industry?," Sustainability, MDPI, vol. 14(1), pages 1-22, December.
    16. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    17. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    18. Chen, Wanying & Gong, Yeming & Chen, Qi & Wang, Hongwei, 2024. "Does battery management matter? Performance evaluation and operating policies in a self-climbing robotic warehouse," European Journal of Operational Research, Elsevier, vol. 312(1), pages 164-181.
    19. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    20. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924010146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.