IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7924.html
   My bibliography  Save this article

In-operando high-speed tomography of lithium-ion batteries during thermal runaway

Author

Listed:
  • Donal P. Finegan

    (Electrochemical Innovation Lab, University College London, Torrington Place)

  • Mario Scheel

    (ESRF, The European Synchrotron
    Synchrotron Soleil, L'Orme des Merisiers)

  • James B. Robinson

    (Electrochemical Innovation Lab, University College London, Torrington Place)

  • Bernhard Tjaden

    (Electrochemical Innovation Lab, University College London, Torrington Place)

  • Ian Hunt

    (Imperial College London, South Kensington Campus)

  • Thomas J. Mason

    (Electrochemical Innovation Lab, University College London, Torrington Place)

  • Jason Millichamp

    (Electrochemical Innovation Lab, University College London, Torrington Place)

  • Marco Di Michiel

    (ESRF, The European Synchrotron)

  • Gregory J. Offer

    (Imperial College London, South Kensington Campus)

  • Gareth Hinds

    (National Physical Laboratory)

  • Dan J.L. Brett

    (Electrochemical Innovation Lab, University College London, Torrington Place)

  • Paul R. Shearing

    (Electrochemical Innovation Lab, University College London, Torrington Place)

Abstract

Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features.

Suggested Citation

  • Donal P. Finegan & Mario Scheel & James B. Robinson & Bernhard Tjaden & Ian Hunt & Thomas J. Mason & Jason Millichamp & Marco Di Michiel & Gregory J. Offer & Gareth Hinds & Dan J.L. Brett & Paul R. Sh, 2015. "In-operando high-speed tomography of lithium-ion batteries during thermal runaway," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7924
    DOI: 10.1038/ncomms7924
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7924
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin, Yaoda & Liu, Chenchen & Li, Na & Lyu, Siqi & Song, Wei-Li & Chen, Hao-Sen & Jiao, Shuqiang, 2023. "In-situ monitoring of multiple signals evolution behaviour for commercial lithium-ion batteries during internal short circuit," Applied Energy, Elsevier, vol. 350(C).
    2. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Craig, Ben & Schoetz, Theresa & Cruden, Andrew & Ponce de Leon, Carlos, 2020. "Review of current progress in non-aqueous aluminium batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Rémy Richard Jacquemond & Maxime van der Heijden & Emre Burak Boz & Eric Ricardo Carreón Ruiz & Katharine Virginia Greco & Jeffrey Adam Kowalski & Vanesa Muñoz Perales & Fikile Richard Brushett & Kitt, 2024. "Quantifying concentration distributions in redox flow batteries with neutron radiography," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
    6. Andreas Ziegler & David Oeser & Thiemo Hein & Daniel Montesinos-Miracle & Ansgar Ackva, 2020. "Run to Failure: Aging of Commercial Battery Cells beyond Their End of Life," Energies, MDPI, vol. 13(8), pages 1-11, April.
    7. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
    8. Yubai Li & Zhifu Zhou & Wei-Tao Wu, 2020. "Three-Dimensional Thermal Modeling of Internal Shorting Process in a 20Ah Lithium-Ion Polymer Battery," Energies, MDPI, vol. 13(4), pages 1-16, February.
    9. Kang, Zhuang & Peng, Qingguo & Yin, Ruixue & Yao, Zhengmin & Song, Yangyang & He, Biao, 2024. "Investigation of multifactorial effects on the thermal performance of battery pack inserted with multi-layer phase change materials," Energy, Elsevier, vol. 290(C).
    10. Xu, Bin & Lee, Jinwoo & Kwon, Daeil & Kong, Lingxi & Pecht, Michael, 2021. "Mitigation strategies for Li-ion battery thermal runaway: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Wang, Haimin & Shi, Weijie & Hu, Feng & Wang, Yufei & Hu, Xuebin & Li, Huanqi, 2021. "Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode," Energy, Elsevier, vol. 224(C).
    12. Saurabh Saxena & Yinjiao Xing & Michael Pecht, 2018. "A Unique Failure Mechanism in the Nexus 6P Lithium-Ion Battery," Energies, MDPI, vol. 11(4), pages 1-13, April.
    13. Lingxi Kong & Chuan Li & Jiuchun Jiang & Michael G. Pecht, 2018. "Li-Ion Battery Fire Hazards and Safety Strategies," Energies, MDPI, vol. 11(9), pages 1-11, August.
    14. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    15. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    16. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    17. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    18. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    19. Plunkett, Samuel T. & Chen, Chengxiu & Rojaee, Ramin & Doherty, Patrick & Sik Oh, Yun & Galazutdinova, Yana & Krishnamurthy, Mahesh & Al-Hallaj, Said, 2021. "Enhancing thermal safety in lithium-ion battery packs through parallel cell ‘current dumping’ mitigation," Applied Energy, Elsevier, vol. 286(C).
    20. Li, Yalun & Gao, Xinlei & Feng, Xuning & Ren, Dongsheng & Li, Yan & Hou, Junxian & Wu, Yu & Du, Jiuyu & Lu, Languang & Ouyang, Minggao, 2022. "Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging," Energy, Elsevier, vol. 239(PB).
    21. Yi Wu & Saurabh Saxena & Yinjiao Xing & Youren Wang & Chuan Li & Winco K. C. Yung & Michael Pecht, 2018. "Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography," Energies, MDPI, vol. 11(4), pages 1-22, April.
    22. Huang, Peifeng & Ping, Ping & Li, Ke & Chen, Haodong & Wang, Qingsong & Wen, Jennifer & Sun, Jinhua, 2016. "Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode," Applied Energy, Elsevier, vol. 183(C), pages 659-673.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.