IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v223y2024ics0960148123018499.html
   My bibliography  Save this article

AIRU-WRF: A physics-guided spatio-temporal wind forecasting model and its application to the U.S. Mid Atlantic offshore wind energy areas

Author

Listed:
  • Ye, Feng
  • Brodie, Joseph
  • Miles, Travis
  • Aziz Ezzat, Ahmed

Abstract

The reliable integration of wind energy into modern-day electricity systems heavily relies on accurate short-term wind forecasts. We propose a spatio-temporal model called AIRU-WRF (short for the AI-powered Rutgers University Weather Research & Forecasting), which combines numerical weather predictions (NWPs) with local observations in order to make wind speed forecasts that are short-term (minutes to hours ahead), and of high resolution, both spatially (site-specific) and temporally (minute-level). In contrast to purely data-driven methods, we undertake a “physics-guided” machine learning (ML) approach which captures salient physical features of the local wind field without the need to explicitly solve for those physics, including: (i) modeling wind field advection and diffusion via physically meaningful kernel functions, (ii) integrating exogenous predictors that are both meteorologically relevant and statistically significant; and (iii) linking the multi-type NWP biases to their driving mesoscale weather conditions. Tested on real-world data from the U.S. Mid Atlantic where several offshore wind projects are in-development, AIRU-WRF achieves notable improvements, in terms of both wind speed and power, relative to various forecasting benchmarks including physics-based, hybrid, statistical, and deep learning methods.

Suggested Citation

  • Ye, Feng & Brodie, Joseph & Miles, Travis & Aziz Ezzat, Ahmed, 2024. "AIRU-WRF: A physics-guided spatio-temporal wind forecasting model and its application to the U.S. Mid Atlantic offshore wind energy areas," Renewable Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:renene:v:223:y:2024:i:c:s0960148123018499
    DOI: 10.1016/j.renene.2023.119934
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:223:y:2024:i:c:s0960148123018499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.