IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124009546.html
   My bibliography  Save this article

Reinforcement learning-based optimization for power scheduling in a renewable energy connected grid

Author

Listed:
  • Ebrie, Awol Seid
  • Kim, Young Jin

Abstract

Power scheduling is an NP-hard optimization problem that demands a delicate equilibrium between economic costs and environmental emissions. In response to the growing concern for climate change, global environmental policies prioritize decarbonizing the electricity sector by integrating renewable energies (REs) into power grids. While this integration brings economic and environmental benefits, the intermittency of REs amplifies the uncertainty and complexity of power scheduling. Existing optimization approaches often grapple with a limited number of units, overlook critical parameters, and disregard the intermittency of REs. To address these limitations, this article introduces a robust and scalable optimization algorithm for renewable integrated power scheduling based on reinforcement learning (RL). In this proposed methodology, the power scheduling problem is decomposed into Markov decision processes (MDPs) within a multi-agent simulation environment. The simulated MDPs are used to train a deep reinforcement learning (DRL) model for solving the optimization. The validity and effectiveness of the proposed method are validated across various test systems, encompassing single-to tri-objective problems with 10–100 generating units. The findings consistently demonstrate the superior performance of the proposed DRL algorithm compared to existing methods, such as multi-agent immune system-based evolutionary priority list (MAI-EPL), binary real-coded genetic algorithm (BRCGA), teaching learning-based optimization (TLBO), quasi-oppositional teaching learning-based algorithm (QOTLBO), hybrid genetic-imperialist competitive algorithm (HGICA), three-stage priority list (TSPL), real-coded grey wolf optimization (RCGWO), multi-objective evolutionary algorithm based on decomposition (MOEAD), and non-dominated sorting algorithms (NSGA-II and NSGA-III). Regarding the experimental results, it is important to highlight the importance of integrating RESs into larger power systems. In a 10-unit system with 2.81 % RE penetration, reductions of 3.42 %, 4.03 %, and 3.10 % were observed in costs, CO2 emissions, and SO2 emissions, respectively. Similarly, in a 100-unit system with a RE penetration rate of only 0.28 %, reductions of 3.75 % in cost, 4.42 % in CO2, and 3.34 % in SO2 were observed. These findings emphasize the effectiveness of RES integration, even at lower penetration rates, in larger-scale power systems.

Suggested Citation

  • Ebrie, Awol Seid & Kim, Young Jin, 2024. "Reinforcement learning-based optimization for power scheduling in a renewable energy connected grid," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009546
    DOI: 10.1016/j.renene.2024.120886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basu, M., 2020. "Optimal generation scheduling of hydrothermal system with demand side management considering uncertainty and outage of renewable energy sources," Renewable Energy, Elsevier, vol. 146(C), pages 530-542.
    2. Wang, Bo & Wang, Shuming & Zhou, Xianzhong & Watada, Junzo, 2016. "Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties," Energy, Elsevier, vol. 111(C), pages 18-31.
    3. de Mars, Patrick & O’Sullivan, Aidan, 2021. "Applying reinforcement learning and tree search to the unit commitment problem," Applied Energy, Elsevier, vol. 302(C).
    4. Weiqiang Dong & Yanjun Li & Ji Xiang, 2016. "Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization," Energies, MDPI, vol. 9(10), pages 1-17, September.
    5. K. Selvakumar & K. Vijayakumar & C. S. Boopathi, 2017. "Demand Response Unit Commitment Problem Solution for Maximizing Generating Companies’ Profit," Energies, MDPI, vol. 10(10), pages 1-18, September.
    6. Xiali Pang & Haiyan Zheng & Liying Huang & Yumei Liang, 2021. "Outer Approximation Method for the Unit Commitment Problem with Wind Curtailment and Pollutant Emission," Mathematics, MDPI, vol. 9(21), pages 1-11, October.
    7. Abujarad, Saleh Y. & Mustafa, M.W. & Jamian, J.J., 2017. "Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 215-223.
    8. Khalid Alqunun & Tawfik Guesmi & Abdullah F. Albaker & Mansoor T. Alturki, 2020. "Stochastic Unit Commitment Problem, Incorporating Wind Power and an Energy Storage System," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    9. Ahmed M. Nassef & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Ahmad Baroutaji, 2023. "Review of Metaheuristic Optimization Algorithms for Power Systems Problems," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    10. Qun Niu & Lipeng Tang & Litao Yu & Han Wang & Zhile Yang, 2024. "Unit Commitment Considering Electric Vehicles and Renewable Energy Integration—A CMAES Approach," Sustainability, MDPI, vol. 16(3), pages 1-28, January.
    11. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    12. Awol Seid Ebrie & Chunhyun Paik & Yongjoo Chung & Young Jin Kim, 2023. "Environment-Friendly Power Scheduling Based on Deep Contextual Reinforcement Learning," Energies, MDPI, vol. 16(16), pages 1-12, August.
    13. Heejung Park, 2022. "A Unit Commitment Model Considering Feasibility of Operating Reserves under Stochastic Optimization Framework," Energies, MDPI, vol. 15(17), pages 1-22, August.
    14. Layon Mescolin de Oliveira & Ivo Chaves da Silva Junior & Ramon Abritta, 2022. "Search Space Reduction for the Thermal Unit Commitment Problem through a Relevance Matrix," Energies, MDPI, vol. 15(19), pages 1-16, September.
    15. Pascale Bendotti & Pierre Fouilhoux & Cécile Rottner, 2019. "On the complexity of the Unit Commitment Problem," Annals of Operations Research, Springer, vol. 274(1), pages 119-130, March.
    16. Saber, Navid Abdolhoseyni & Salimi, Mahdi & Mirabbasi, Davar, 2016. "A priority list based approach for solving thermal unit commitment problem with novel hybrid genetic-imperialist competitive algorithm," Energy, Elsevier, vol. 117(P1), pages 272-280.
    17. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingyuan Yan & Zhaoyi Wang & Ling Xing & Chenchen Zhu, 2024. "Optimal Economic Analysis of Battery Energy Storage System Integrated with Electric Vehicles for Voltage Regulation in Photovoltaics Connected Distribution System," Sustainability, MDPI, vol. 16(19), pages 1-44, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Layon Mescolin de Oliveira & Ivo Chaves da Silva Junior & Ramon Abritta, 2022. "Search Space Reduction for the Thermal Unit Commitment Problem through a Relevance Matrix," Energies, MDPI, vol. 15(19), pages 1-16, September.
    2. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    3. Vasilios A. Tsalavoutis & Constantinos G. Vrionis & Athanasios I. Tolis, 2021. "Optimizing a unit commitment problem using an evolutionary algorithm and a plurality of priority lists," Operational Research, Springer, vol. 21(1), pages 1-54, March.
    4. Erica Ocampo & Yen-Chih Huang & Cheng-Chien Kuo, 2020. "Feasible Reserve in Day-Ahead Unit Commitment Using Scenario-Based Optimization," Energies, MDPI, vol. 13(20), pages 1-17, October.
    5. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    6. Awol Seid Ebrie & Chunhyun Paik & Yongjoo Chung & Young Jin Kim, 2023. "Environment-Friendly Power Scheduling Based on Deep Contextual Reinforcement Learning," Energies, MDPI, vol. 16(16), pages 1-12, August.
    7. Hongxia Liu & Huiling Wang & Zongtang Xie, 2019. "Wind utilization and carbon emissions equilibrium: Scheduling strategy for wind-thermal generation system," Energy & Environment, , vol. 30(6), pages 1111-1131, September.
    8. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Wang, Jinwen & Guo, Min & Liu, Yong, 2018. "Hydropower unit commitment with nonlinearity decoupled from mixed integer nonlinear problem," Energy, Elsevier, vol. 150(C), pages 839-846.
    10. Layon Mescolin de Oliveira & Ivo Chaves da Silva Junior & Ramon Abritta, 2023. "A Space Reduction Heuristic for Thermal Unit Commitment Considering Ramp Constraints and Large-Scale Generation Systems," Energies, MDPI, vol. 16(14), pages 1-15, July.
    11. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    12. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    13. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    14. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2018. "Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling," Energy, Elsevier, vol. 160(C), pages 940-953.
    15. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
    16. Elattar, Ehab E., 2019. "Environmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithm," Energy, Elsevier, vol. 171(C), pages 256-269.
    17. Gerrit Erichsen & Tobias Zimmermann & Alfons Kather, 2019. "Effect of Different Interval Lengths in a Rolling Horizon MILP Unit Commitment with Non-Linear Control Model for a Small Energy System," Energies, MDPI, vol. 12(6), pages 1-24, March.
    18. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    19. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    20. Shahbazitabar, Maryam & Abdi, Hamdi, 2018. "A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation," Energy, Elsevier, vol. 161(C), pages 308-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.