IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v150y2018icp839-846.html
   My bibliography  Save this article

Hydropower unit commitment with nonlinearity decoupled from mixed integer nonlinear problem

Author

Listed:
  • Wang, Jinwen
  • Guo, Min
  • Liu, Yong

Abstract

This paper formulates a nonlinear and discrete hydropower unit commitment (UC) problem, which is particular useful to coordinate with the higher level operation of cascaded hydropower reservoirs. Given the outflow process, this UC problem maximizes energy production during a planning horizon, to determine the unit operating zones and allocate the release among units in one hydroplant. This work shows how the constraints on the start-up number and up/down hours can be transformed into linear equations. The objective is equivalently interpreted to sequentially minimize spillages, maximize generation efficiency, and maximize energy production, which makes it possible to handle the nonlinearity in a low-dimensional space due to the lowest priority of the third sub-objective where the nonlinearity comes. The UC problem is skillfully decomposed into a zone commitment (ZC) that determines the optimal operating zones using the mixed integer linear programming, and one-stage sub-problems that allocate the outflow among units using the hill-climbing method. The case studies that deal with quarter-hourly hydropower unit commitments during a day show that the present model and procedure turn out to be efficient for a UC problem with up to four units, becoming volatile then on, but still acceptable for up to nine units.

Suggested Citation

  • Wang, Jinwen & Guo, Min & Liu, Yong, 2018. "Hydropower unit commitment with nonlinearity decoupled from mixed integer nonlinear problem," Energy, Elsevier, vol. 150(C), pages 839-846.
  • Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:839-846
    DOI: 10.1016/j.energy.2018.02.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aghaei, Jamshid & Nikoobakht, Ahmad & Siano, Pierluigi & Nayeripour, Majid & Heidari, Alireza & Mardaneh, Mohammad, 2016. "Exploring the reliability effects on the short term AC security-constrained unit commitment: A stochastic evaluation," Energy, Elsevier, vol. 114(C), pages 1016-1032.
    2. Wang, Bo & Wang, Shuming & Zhou, Xianzhong & Watada, Junzo, 2016. "Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties," Energy, Elsevier, vol. 111(C), pages 18-31.
    3. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    4. C. Beltran & F. J. Heredia, 2002. "Unit Commitment by Augmented Lagrangian Relaxation: Testing Two Decomposition Approaches," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 295-314, February.
    5. Saber, Navid Abdolhoseyni & Salimi, Mahdi & Mirabbasi, Davar, 2016. "A priority list based approach for solving thermal unit commitment problem with novel hybrid genetic-imperialist competitive algorithm," Energy, Elsevier, vol. 117(P1), pages 272-280.
    6. Delarue, Erik & D'haeseleer, William, 2008. "Adaptive mixed-integer programming unit commitment strategy for determining the value of forecasting," Applied Energy, Elsevier, vol. 85(4), pages 171-181, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    2. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    3. Shuangquan Liu & Pengcheng Wang & Zifan Xu & Zhipeng Feng & Congtong Zhang & Jinwen Wang & Cheng Chen, 2023. "Hydropower Unit Commitment Using a Genetic Algorithm with Dynamic Programming," Energies, MDPI, vol. 16(15), pages 1-13, August.
    4. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Cheng, Xianliang & Feng, Suzhen & Zheng, Hao & Wang, Jinwen & Liu, Shuangquan, 2022. "A hierarchical model in short-term hydro scheduling with unit commitment and head-dependency," Energy, Elsevier, vol. 251(C).
    6. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    7. Razavi, Seyed-Ehsan & Esmaeel Nezhad, Ali & Mavalizadeh, Hani & Raeisi, Fatima & Ahmadi, Abdollah, 2018. "Robust hydrothermal unit commitment: A mixed-integer linear framework," Energy, Elsevier, vol. 165(PB), pages 593-602.
    8. Hassan Shokouhandeh & Mehrdad Ahmadi Kamarposhti & Ilhami Colak & Kei Eguchi, 2021. "Unit Commitment for Power Generation Systems Based on Prices in Smart Grid Environment Considering Uncertainty," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    9. Iram Parvez & Jianjian Shen & Ishitaq Hassan & Nannan Zhang, 2021. "Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant," Energies, MDPI, vol. 14(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bo & Zhou, Min & Xin, Bo & Zhao, Xin & Watada, Junzo, 2019. "Analysis of operation cost and wind curtailment using multi-objective unit commitment with battery energy storage," Energy, Elsevier, vol. 178(C), pages 101-114.
    2. Zhou, Min & Wang, Bo & Li, Tiantian & Watada, Junzo, 2018. "A data-driven approach for multi-objective unit commitment under hybrid uncertainties," Energy, Elsevier, vol. 164(C), pages 722-733.
    3. Li, Chaoshun & Wang, Wenxiao & Wang, Jinwen & Chen, Deshu, 2019. "Network-constrained unit commitment with RE uncertainty and PHES by using a binary artificial sheep algorithm," Energy, Elsevier, vol. 189(C).
    4. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    5. Yuan, Xiaohui & Chen, Zhihuan & Yuan, Yanbin & Huang, Yuehua, 2015. "Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method," Energy, Elsevier, vol. 93(P1), pages 173-187.
    6. Bai, Yang & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Xie, Le, 2015. "A decomposition method for network-constrained unit commitment with AC power flow constraints," Energy, Elsevier, vol. 88(C), pages 595-603.
    7. Schulze, Tim & McKinnon, Ken, 2016. "The value of stochastic programming in day-ahead and intra-day generation unit commitment," Energy, Elsevier, vol. 101(C), pages 592-605.
    8. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    9. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    10. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    11. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    12. Dong, Jizhe & Han, Shunjie & Shao, Xiangxin & Tang, Like & Chen, Renhui & Wu, Longfei & Zheng, Cunlong & Li, Zonghao & Li, Haolin, 2021. "Day-ahead wind-thermal unit commitment considering historical virtual wind power data," Energy, Elsevier, vol. 235(C).
    13. Gejirifu De & Zhongfu Tan & Menglu Li & Liling Huang & Xueying Song, 2018. "Two-Stage Stochastic Optimization for the Strategic Bidding of a Generation Company Considering Wind Power Uncertainty," Energies, MDPI, vol. 11(12), pages 1-21, December.
    14. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    15. Vasilios A. Tsalavoutis & Constantinos G. Vrionis & Athanasios I. Tolis, 2021. "Optimizing a unit commitment problem using an evolutionary algorithm and a plurality of priority lists," Operational Research, Springer, vol. 21(1), pages 1-54, March.
    16. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    17. Shahbazitabar, Maryam & Abdi, Hamdi, 2018. "A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation," Energy, Elsevier, vol. 161(C), pages 308-324.
    18. Jiao, P.H. & Chen, J.J. & Cai, X. & Zhao, Y.L., 2024. "Fuzzy semi-entropy based downside risk to low-carbon oriented multi-energy dispatch considering multiple dependent uncertainties," Energy, Elsevier, vol. 287(C).
    19. Shukla, Anup & Singh, S.N., 2016. "Advanced three-stage pseudo-inspired weight-improved crazy particle swarm optimization for unit commitment problem," Energy, Elsevier, vol. 96(C), pages 23-36.
    20. Nikoobakht, Ahmad & Aghaei, Jamshid & Mardaneh, Mohammad, 2017. "Securing highly penetrated wind energy systems using linearized transmission switching mechanism," Applied Energy, Elsevier, vol. 190(C), pages 1207-1220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:150:y:2018:i:c:p:839-846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.