IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1465-d112902.html
   My bibliography  Save this article

Demand Response Unit Commitment Problem Solution for Maximizing Generating Companies’ Profit

Author

Listed:
  • K. Selvakumar

    (Department of EEE, SRM University, Chennai 603203, India)

  • K. Vijayakumar

    (Department of EEE, SRM University, Chennai 603203, India)

  • C. S. Boopathi

    (Department of EEE, SRM University, Chennai 603203, India)

Abstract

Over the recent years there has been an immense growth in load consumption due to which, Load Management (LM) has become more significant. Energy providers around the world apply different load management concepts and techniques to improve the load profile. In order to reduce the stress over the load management, Demand Response Unit Commitment (DRUC), a new concept, has been implemented in this paper. The main feature of this concept is that both the energy providers and consumers must participate in order to get mutual benefits hence maximizing each of their profits. In this paper we discuss the time-based Demand Response Program since there is no penalty observed in this program. When the Demand Response was combined with Unit Commitment and compiled it was observed that a satisfactory solution resulted, which is proved to be mutually beneficial for both Generating Companies (GENCOs) and their customers. Here, we have used a Cat Swarm Optimization (CSO) technique to find the solution for the DRUC problem. The results are obtained using CSO technique for UC problem with and without DR program. This is compared with the results obtained using other conventional methods. The test system considered for the study is IEEE39 bus system.

Suggested Citation

  • K. Selvakumar & K. Vijayakumar & C. S. Boopathi, 2017. "Demand Response Unit Commitment Problem Solution for Maximizing Generating Companies’ Profit," Energies, MDPI, vol. 10(10), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1465-:d:112902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fotouhi Ghazvini, Mohammad Ali & Soares, João & Horta, Nuno & Neves, Rui & Castro, Rui & Vale, Zita, 2015. "A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers," Applied Energy, Elsevier, vol. 151(C), pages 102-118.
    2. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    3. Morales-España, Germán & Ramírez-Elizondo, Laura & Hobbs, Benjamin F., 2017. "Hidden power system inflexibilities imposed by traditional unit commitment formulations," Applied Energy, Elsevier, vol. 191(C), pages 223-238.
    4. Howlader, Harun Or Rashid & Matayoshi, Hidehito & Senjyu, Tomonobu, 2016. "Distributed generation integrated with thermal unit commitment considering demand response for energy storage optimization of smart grid," Renewable Energy, Elsevier, vol. 99(C), pages 107-117.
    5. Kwag, Hyung-Geun & Kim, Jin-O, 2012. "Optimal combined scheduling of generation and demand response with demand resource constraints," Applied Energy, Elsevier, vol. 96(C), pages 161-170.
    6. Suman Kumar Saha & R. Kar & D. Mandal & S. P. Ghoshal, 2013. "A Novel Firefly Algorithm for Optimal Linear Phase FIR Filter Design," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 4(2), pages 29-48, April.
    7. Grünewald, Philipp & Torriti, Jacopo, 2013. "Demand response from the non-domestic sector: Early UK experiences and future opportunities," Energy Policy, Elsevier, vol. 61(C), pages 423-429.
    8. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Faria, 2019. "Distributed Energy Resources Management," Energies, MDPI, vol. 12(3), pages 1-3, February.
    2. Ebrie, Awol Seid & Kim, Young Jin, 2024. "Reinforcement learning-based optimization for power scheduling in a renewable energy connected grid," Renewable Energy, Elsevier, vol. 230(C).
    3. Vinicius Neves Motta & Miguel F. Anjos & Michel Gendreau, 2023. "Optimal allocation of demand response considering transmission system congestion," Computational Management Science, Springer, vol. 20(1), pages 1-22, December.
    4. Rai, Ussama & Oluleye, Gbemi & Hawkes, Adam, 2022. "An optimisation model to determine the capacity of a distributed energy resource to contract with a balancing services aggregator," Applied Energy, Elsevier, vol. 306(PA).
    5. Seungmi Lee & Jinho Kim, 2018. "Analytical Assessment for System Peak Reduction by Demand Responsive Resources Considering Their Operational Constraints in Wholesale Electricity Market," Energies, MDPI, vol. 11(12), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    2. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2015. "Performance evaluation of power demand scheduling scenarios in a smart grid environment," Applied Energy, Elsevier, vol. 142(C), pages 164-178.
    3. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    4. Dagoumas, Athanasios S. & Polemis, Michael L., 2017. "An integrated model for assessing electricity retailer’s profitability with demand response," Applied Energy, Elsevier, vol. 198(C), pages 49-64.
    5. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    6. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    7. Neda Hajibandeh & Miadreza Shafie-khah & Sobhan Badakhshan & Jamshid Aghaei & Sílvio J. P. S. Mariano & João P. S. Catalão, 2019. "Multi-Objective Market Clearing Model with an Autonomous Demand Response Scheme," Energies, MDPI, vol. 12(7), pages 1-16, April.
    8. Jacopo Torriti & Philipp Grunewald, 2014. "Demand Side Response: Patterns in Europe and Future Policy Perspectives under Capacity Mechanisms," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    9. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    10. Mahboubi-Moghaddam, Esmaeil & Nayeripour, Majid & Aghaei, Jamshid, 2016. "Reliability constrained decision model for energy service provider incorporating demand response programs," Applied Energy, Elsevier, vol. 183(C), pages 552-565.
    11. Seungmi Lee & Jinho Kim, 2018. "Analytical Assessment for System Peak Reduction by Demand Responsive Resources Considering Their Operational Constraints in Wholesale Electricity Market," Energies, MDPI, vol. 11(12), pages 1-15, November.
    12. Arasteh, Hamidreza & Sepasian, Mohammad Sadegh & Vahidinasab, Vahid, 2016. "An aggregated model for coordinated planning and reconfiguration of electric distribution networks," Energy, Elsevier, vol. 94(C), pages 786-798.
    13. Reihani, Ehsan & Motalleb, Mahdi & Thornton, Matsu & Ghorbani, Reza, 2016. "A novel approach using flexible scheduling and aggregation to optimize demand response in the developing interactive grid market architecture," Applied Energy, Elsevier, vol. 183(C), pages 445-455.
    14. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    15. Eissa, M.M., 2019. "Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol," Applied Energy, Elsevier, vol. 236(C), pages 273-292.
    16. Chen, Yang & Hu, Mengqi & Zhou, Zhi, 2017. "A data-driven analytical approach to enable optimal emerging technologies integration in the co-optimized electricity and ancillary service markets," Energy, Elsevier, vol. 122(C), pages 613-626.
    17. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    18. Zhang, Menghan & Yang, Zhifang & Lin, Wei & Yu, Juan & Dai, Wei & Du, Ershun, 2021. "Enhancing economics of power systems through fast unit commitment with high time resolution," Applied Energy, Elsevier, vol. 281(C).
    19. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    20. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1465-:d:112902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.