Optimal generation scheduling of hydrothermal system with demand side management considering uncertainty and outage of renewable energy sources
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.06.069
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shilaja, C. & Ravi, K., 2017. "Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation," Renewable Energy, Elsevier, vol. 107(C), pages 550-566.
- Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
- Pérez-Díaz, Juan I. & Jiménez, Javier, 2016. "Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration," Energy, Elsevier, vol. 109(C), pages 92-104.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
- Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
- Ebrie, Awol Seid & Kim, Young Jin, 2024. "Reinforcement learning-based optimization for power scheduling in a renewable energy connected grid," Renewable Energy, Elsevier, vol. 230(C).
- Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Patwal, Rituraj Singh & Narang, Nitin, 2020. "Multi-objective generation scheduling of integrated energy system using fuzzy based surrogate worth trade-off approach," Renewable Energy, Elsevier, vol. 156(C), pages 864-882.
- Rosane Santos & André Luiz Diniz & Bruno Borba, 2022. "Assessment of the Modeling of Demand Response as a Dispatchable Resource in Day-Ahead Hydrothermal Unit Commitment Problems: The Brazilian Case," Energies, MDPI, vol. 15(11), pages 1-15, May.
- Rehman, Obaid Ur & Khan, Shahid A. & Javaid, Nadeem, 2021. "Decoupled building-to-transmission-network for frequency support in PV systems dominated grid," Renewable Energy, Elsevier, vol. 178(C), pages 930-945.
- Yin, Hao & Wu, Fei & Meng, Xin & Lin, Yicheng & Fan, Jingmin & Meng, Anbo, 2020. "Crisscross optimization based short-term hydrothermal generation scheduling with cascaded reservoirs," Energy, Elsevier, vol. 203(C).
- Mohseni, Soheil & Khalid, Roomana & Brent, Alan C., 2023. "Stochastic, resilience-oriented optimal sizing of off-grid microgrids considering EV-charging demand response: An efficiency comparison of state-of-the-art metaheuristics," Applied Energy, Elsevier, vol. 341(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Basu, Mousumi, 2022. "Fuel constrained short-term hydrothermal generation scheduling," Energy, Elsevier, vol. 239(PD).
- Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
- Patwal, Rituraj Singh & Narang, Nitin & Garg, Harish, 2018. "A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units," Energy, Elsevier, vol. 142(C), pages 822-837.
- Basu, M., 2022. "Fuel constrained combined heat and power dynamic dispatch using horse herd optimization algorithm," Energy, Elsevier, vol. 246(C).
- Basu, M., 2021. "Fuel constrained dynamic economic dispatch with demand side management," Energy, Elsevier, vol. 223(C).
- Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
- Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
- Ruben Zieba Falama & Wojciech Skarka & Serge Yamigno Doka, 2022. "Optimal Design and Comparative Analysis of a PV/Mini-Hydropower and a PV/Battery Used for Electricity and Water Supply," Energies, MDPI, vol. 16(1), pages 1-22, December.
- Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
- Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
- Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
- Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
- Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
- Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
- Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
- Ghandehariun, Samane & Ghandehariun, Amir M. & Bahrami Ziabari, Nima, 2024. "Complementary assessment and design optimization of a hybrid renewable energy system integrated with open-loop pumped hydro energy storage," Renewable Energy, Elsevier, vol. 227(C).
- Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
- Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
- Mahesh Vinayak Hadole & Kamlesh Narayan Tiwari & Prabodh Bajpai, 2021. "Energy generation and flow rate prediction of photovoltaic water pumping system for irrigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6722-6733, May.
- Shyam, B. & Kanakasabapathy, P., 2022. "Feasibility of floating solar PV integrated pumped storage system for a grid-connected microgrid under static time of day tariff environment: A case study from India," Renewable Energy, Elsevier, vol. 192(C), pages 200-215.
More about this item
Keywords
Demand side management; Cascaded reservoirs; Pumped-storage-hydraulic unit; Renewable energy sources; Uncertainty; Outage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:530-542. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.