IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v6y2017i4p56-d114855.html
   My bibliography  Save this article

Performance Analysis of Slinky Horizontal Ground Heat Exchangers for a Ground Source Heat Pump System

Author

Listed:
  • Md. Hasan Ali

    (Graduate School of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
    Department of Energy Science and Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh)

  • Keishi Kariya

    (Department of Mechanical Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan)

  • Akio Miyara

    (Department of Mechanical Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
    International Institute for Carbon-Neutral Energy Research, Kyushu University, Fukuoka-shi 819-0395, Japan)

Abstract

This paper highlights the thermal performance of reclined (parallel to ground surface) and standing (perpendicular to ground surface) slinky horizontal ground heat exchangers (HGHEs) with different water mass flow rates in the heating mode of continuous and intermittent operations. A copper tube with an outer surface protected with low-density polyethylene was selected as the tube material of the ground heat exchanger. Effects on ground temperature around the reclined slinky HGHE due to heat extraction and the effect of variation of ground temperatures on reclined HGHE performance are discussed. A higher heat exchange rate was experienced in standing HGHE than in reclined HGHE. The standing HGHE was affected by deeper ground temperature and also a greater amount of backfilled sand in standing HGHE (4.20 m 3 ) than reclined HGHE (1.58 m 3 ), which has higher thermal conductivity than site soil. For mass flow rate of 1 L/min with inlet water temperature 7 °C, the 4-day average heat extraction rates increased 45.3% and 127.3%, respectively, when the initial average ground temperatures at 1.5 m depth around reclined HGHE increased from 10.4 °C to 11.7 °C and 10.4 °C to 13.7 °C. In the case of intermittent operation, which boosted the thermal performance, a short time interval of intermittent operation is better than a long time interval of intermittent operation. Furthermore, from the viewpoint of power consumption by the circulating pump, the intermittent operation is more efficient than continuous operation.

Suggested Citation

  • Md. Hasan Ali & Keishi Kariya & Akio Miyara, 2017. "Performance Analysis of Slinky Horizontal Ground Heat Exchangers for a Ground Source Heat Pump System," Resources, MDPI, vol. 6(4), pages 1-18, October.
  • Handle: RePEc:gam:jresou:v:6:y:2017:i:4:p:56-:d:114855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/6/4/56/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/6/4/56/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    2. Florides, G. & Theofanous, E. & Iosif-Stylianou, I. & Tassou, S. & Christodoulides, P. & Zomeni, Z. & Tsiolakis, E. & Kalogirou, S. & Messaritis, V. & Pouloupatis, P. & Panayiotou, G., 2013. "Modeling and assessment of the efficiency of horizontal and vertical ground heat exchangers," Energy, Elsevier, vol. 58(C), pages 655-663.
    3. Chong, Chiew Shan Anthony & Gan, Guohui & Verhoef, Anne & Garcia, Raquel Gonzalez & Vidale, Pier Luigi, 2013. "Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground source heat pumps," Applied Energy, Elsevier, vol. 104(C), pages 603-610.
    4. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    5. Tarnawski, V.R. & Leong, W.H. & Momose, T. & Hamada, Y., 2009. "Analysis of ground source heat pumps with horizontal ground heat exchangers for northern Japan," Renewable Energy, Elsevier, vol. 34(1), pages 127-134.
    6. Xiong, Zeyu & Fisher, Daniel E. & Spitler, Jeffrey D., 2015. "Development and validation of a Slinky™ ground heat exchanger model," Applied Energy, Elsevier, vol. 141(C), pages 57-69.
    7. Yupeng Wu & Guohui Gan & Raquel Garcia Gonzalez & Anne Verhoef & Pier Luigi Vidale, 2011. "Prediction of the thermal performance of horizontal-coupled ground-source heat exchangers," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(4), pages 261-269, June.
    8. Naili, Nabiha & Hazami, Majdi & Attar, Issam & Farhat, Abdelhamid, 2013. "In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia," Energy, Elsevier, vol. 61(C), pages 319-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teguh Hady Ariwibowo & Akio Miyara, 2020. "Thermal Characteristics of Slinky-Coil Ground Heat Exchanger with Discrete Double Inclined Ribs," Resources, MDPI, vol. 9(9), pages 1-17, August.
    2. Ozbek, Berk Baris & Aydın, Hakkı & Merey, Şükrü, 2024. "Ground source cooling to increase power generation from geothermal power plants," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    3. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    4. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Jeon, Jun-Seo & Lee, Seung-Rae & Kim, Min-Jun, 2018. "A modified mathematical model for spiral coil-type horizontal ground heat exchangers," Energy, Elsevier, vol. 152(C), pages 732-743.
    6. Jun-Seo Jeon & Seung-Rae Lee & Min-Jun Kim & Seok Yoon, 2018. "Suggestion of a Scale Factor to Design Spiral-Coil-Type Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 11(10), pages 1-16, October.
    7. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2018. "Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems," Energy, Elsevier, vol. 151(C), pages 556-568.
    8. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    9. Sofyan, Sarwo Edhy & Hu, Eric & Kotousov, Andrei, 2016. "A new approach to modelling of a horizontal geo-heat exchanger with an internal source term," Applied Energy, Elsevier, vol. 164(C), pages 963-971.
    10. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    11. Tong, Cang & Li, Xiangli & Ju, Hengjin & Duanmu, Lin & Huang, Caifeng, 2024. "A hybrid numerical model for horizontal ground heat exchanger," Renewable Energy, Elsevier, vol. 230(C).
    12. Jing, Zefeng & Wang, Huaijiu & Feng, Chenchen & Wang, Shuzhong, 2020. "Numerical study on the heat characteristics of a novel artificial seepage thermal storage based on the successive four seasons," Renewable Energy, Elsevier, vol. 160(C), pages 1185-1193.
    13. Tang, Fujiao & Nowamooz, Hossein, 2020. "Outlet temperatures of a slinky-type Horizontal Ground Heat Exchanger with the atmosphere-soil interaction," Renewable Energy, Elsevier, vol. 146(C), pages 705-718.
    14. Salsuwanda Selamat & Akio Miyara & Keishi Kariya, 2015. "Analysis of Short Time Period of Operation of Horizontal Ground Heat Exchangers," Resources, MDPI, vol. 4(3), pages 1-17, July.
    15. Chengbin Zhang & Weibo Yang & Jingjing Yang & Suchen Wu & Yongping Chen, 2017. "Experimental Investigations and Numerical Simulation of Thermal Performance of a Horizontal Slinky-Coil Ground Heat Exchanger," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    16. Yang, Weibo & Xu, Rui & Wang, Feng & Chen, Shikun, 2020. "Experimental and numerical investigations on the thermal performance of a horizontal spiral-coil ground heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 979-995.
    17. Lili Tan & James A. Love, 2013. "A Literature Review on Heating of Ventilation Air with Large Diameter Earth Tubes in Cold Climates," Energies, MDPI, vol. 6(8), pages 1-10, July.
    18. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    19. Teguh Hady Ariwibowo & Akio Miyara, 2020. "Thermal Characteristics of Slinky-Coil Ground Heat Exchanger with Discrete Double Inclined Ribs," Resources, MDPI, vol. 9(9), pages 1-17, August.
    20. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2017. "Thermal performance of a solar assisted horizontal ground heat exchanger," Energy, Elsevier, vol. 140(P1), pages 1216-1227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:6:y:2017:i:4:p:56-:d:114855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.