IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v229y2024ics0960148124008243.html
   My bibliography  Save this article

Biodiesel production via simultaneous esterification and transesterification of Periplaneta americana oil with liquid lipase Eversa® transform 2.0

Author

Listed:
  • Guo, Jing-jing
  • Gao, Shuai
  • Yang, Jian
  • Zhang, Huan
  • Wang, Yi-tong
  • Ding, Wo-na
  • Fang, Zhen

Abstract

Undeveloped Periplaneta americana oil (acid value 38.32 mg KOH/g) was directly used for one-step production of biodiesel with lipase without acid-pretreatment step for the commercial alkaline process. Biodiesel was produced via simultaneous esterification and transesterification of Periplaneta americana oil in the presence of lipase Eversa® Transform 2.0 (ET2) (12 US$/kg) in solvent-free system. The maximum biodiesel yield of 98.63 % was obtained under the optimized conditions of 32 °C, 8.5 wt.% lipase dosage, 8 h, 6.5/1 methanol/oil molar ratio, and 4 wt.% water. Lipase ET2 was recycled 6 times at > 89.52 % biodiesel yield. Biodiesel yield of 93.94 % was further achieved in a 1 L reactor with 15.08 g/kg lipase/biodiesel. Biodiesel cost was estimated as 589.3 US$/ton. Kinetics study gave activation energy of 24.50 kJ/mol with kinetic Michaelis constant of 1.19 mol/L. The physicochemical properties of biodiesel met both Chinese national and US ASTM standards that could be blended with petro-diesel to be applied in both countries. This study suggests that lipase could directly catalyze waste oils for the production of biodiesel at low temperature.

Suggested Citation

  • Guo, Jing-jing & Gao, Shuai & Yang, Jian & Zhang, Huan & Wang, Yi-tong & Ding, Wo-na & Fang, Zhen, 2024. "Biodiesel production via simultaneous esterification and transesterification of Periplaneta americana oil with liquid lipase Eversa® transform 2.0," Renewable Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008243
    DOI: 10.1016/j.renene.2024.120756
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124008243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.