IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp152-160.html
   My bibliography  Save this article

Biodiesel production from phoenix tree seed oil catalyzed by liquid lipozyme TL100L

Author

Listed:
  • Sun, Shangde
  • Li, Kaiyue

Abstract

Biodiesel is a green and sustainable energy, which is a fatty acid alkyl ester as an alternative to petroleum diesel. In the work, phoenix tree seed oil, one kind of undeveloped woody plant resource, was used as the novel raw material for biodiesel preparation. Several free liquid lipases were used as biocatalysts to catalyze the transesterification of phoenix tree seed oil (PTSO) with methanol. Effects of transesterification variables (enzyme load, substrate ratio, transesterification time and temperature) on biodiesel preparation were evaluated and optimized using RSM. Results showed that PTSO was a good alternative for biodiesel preparation. Among these tested free liquid lipases, lipozyme TL100L from Thermomyces laguginosus showed the best performance for the transesterification. Transesterification variables were optimized and the maximum biodiesel yield (98.8 ± 1.1%) was achieved under the optimal conditions (enzyme load 10%, transesterification temperature 30 °C, substrate ratio (PTSO to methanol) 1:5 (mol/mol) and reaction time 6.98 h). The activation energy of biodiesel formation was 21.3 kJ/mol. Kinetic parameters K’m and Vmax were 2.55 × 10−1 mol/L and 6.9 × 10−3 mol/(L·min), respectively.

Suggested Citation

  • Sun, Shangde & Li, Kaiyue, 2020. "Biodiesel production from phoenix tree seed oil catalyzed by liquid lipozyme TL100L," Renewable Energy, Elsevier, vol. 151(C), pages 152-160.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:152-160
    DOI: 10.1016/j.renene.2019.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gog, Adriana & Roman, Marius & Toşa, Monica & Paizs, Csaba & Irimie, Florin Dan, 2012. "Biodiesel production using enzymatic transesterification – Current state and perspectives," Renewable Energy, Elsevier, vol. 39(1), pages 10-16.
    2. Maleki, Esmat & Aroua, Mohamed Kheireddine & Sulaiman, Nik Meriam Nik, 2013. "Improved yield of solvent free enzymatic methanolysis of palm and jatropha oils blended with castor oil," Applied Energy, Elsevier, vol. 104(C), pages 905-909.
    3. Ahmad, Tanweer & Danish, Mohammed & Kale, Pradeep & Geremew, Belete & Adeloju, Samuel B. & Nizami, Maniruddin & Ayoub, Muhammad, 2019. "Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations," Renewable Energy, Elsevier, vol. 139(C), pages 1272-1280.
    4. Matinja, Adamu Idris & Mohd Zain, Nor Azimah & Suhaimi, Mohd Suardi & Alhassan, Adamu Jibril, 2019. "Optimization of biodiesel production from palm oil mill effluent using lipase immobilized in PVA-alginate-sulfate beads," Renewable Energy, Elsevier, vol. 135(C), pages 1178-1185.
    5. Issariyakul, Titipong & Dalai, Ajay K., 2014. "Biodiesel from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 446-471.
    6. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    7. Su, Feng & Peng, Cheng & Li, Guan-Lin & Xu, Li & Yan, Yun-Jun, 2016. "Biodiesel production from woody oil catalyzed by Candida rugosa lipase in ionic liquid," Renewable Energy, Elsevier, vol. 90(C), pages 329-335.
    8. Arumugam, A. & Ponnusami, V., 2019. "Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview," Renewable Energy, Elsevier, vol. 131(C), pages 459-471.
    9. Zhao, Kang & Cao, Xi & Di, Qinjian & Wang, Meng & Cao, Hao & Deng, Li & Liu, Junfeng & Wang, Fang & Tan, Tianwei, 2017. "Synthesis, characterization and optimization of a two-step immobilized lipase," Renewable Energy, Elsevier, vol. 103(C), pages 383-387.
    10. Esonye, Chizoo & Onukwuli, Okechukwu Dominic & Ofoefule, Akuzuo Uwaoma, 2019. "Optimization of methyl ester production from Prunus Amygdalus seed oil using response surface methodology and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 130(C), pages 61-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    2. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    3. Praveena, V. & Martin, Leenus Jesu & Matijošius, Jonas & Aloui, Fethi & Pugazhendhi, Arivalagan & Varuvel, Edwin Geo, 2024. "A systematic review on biofuel production and utilization from algae and waste feedstocks– a circular economy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Dilip & Das, Tapas & Giri, Balendu Shekher & Verma, Bhawna, 2020. "Preparation and characterization of novel hybrid bio-support material immobilized from Pseudomonas cepacia lipase and its application to enhance biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 11-24.
    2. Oliveira, Anne Caroline Defranceschi & Frensch, Gustavo & Marques, Francisco de Assis & Vargas, José Viriato Coelho & Rodrigues, Maria Luiza Fernandes & Mariano, André Bellin, 2020. "Production of methyl oleate by direct addition of fermented solid Penicillium sumatrense and Aspergillus fumigatus," Renewable Energy, Elsevier, vol. 162(C), pages 1132-1139.
    3. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    4. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    5. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    6. Pradhan, Anup & Mbohwa, Charles, 2014. "Development of biofuels in South Africa: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1089-1100.
    7. Capuano, D. & Costa, M. & Di Fraia, S. & Massarotti, N. & Vanoli, L., 2017. "Direct use of waste vegetable oil in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 759-770.
    8. Ahmad, Shamshad & Chaudhary, Shalini & Pathak, Vinayak V. & Kothari, Richa & Tyagi, V.V., 2020. "Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano – CaO catalyst," Renewable Energy, Elsevier, vol. 160(C), pages 86-97.
    9. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    10. Krishna Kumar Gupta & Kanak Kalita & Ranjan Kumar Ghadai & Manickam Ramachandran & Xiao-Zhi Gao, 2021. "Machine Learning-Based Predictive Modelling of Biodiesel Production—A Comparative Perspective," Energies, MDPI, vol. 14(4), pages 1-16, February.
    11. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    12. Sitepu, Eko K. & Heimann, Kirsten & Raston, Colin L. & Zhang, Wei, 2020. "Critical evaluation of process parameters for direct biodiesel production from diverse feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    13. Budžaki, Sandra & Miljić, Goran & Tišma, Marina & Sundaram, Smitha & Hessel, Volker, 2017. "Is there a future for enzymatic biodiesel industrial production in microreactors?," Applied Energy, Elsevier, vol. 201(C), pages 124-134.
    14. Sudalai, S & Rupesh, K J & Devanesan, M.G & Arumugam, A, 2023. "A critical review of Madhuca indica as an efficient biodiesel producer: Towards sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Tizvir, A. & Shojaeefard, M.H. & Zahedi, A. & Molaeimanesh, G.R., 2022. "Performance and emission characteristics of biodiesel fuel from Dunaliella tertiolecta microalgae," Renewable Energy, Elsevier, vol. 182(C), pages 552-561.
    16. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    17. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    18. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    19. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    20. Li, Chong & Ye, Mingzhi & Liu, Bo & Shang, Yanlei & Ning, Hongbo & Shi, Jinchun & Luo, Sheng-Nian, 2023. "Shock tube experiments and kinetic modeling of ignition of unsaturated C5 methyl esters," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:152-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.