IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124019293.html
   My bibliography  Save this article

Application of metal organic frameworks ZIF-8-based solid catalyst with hierarchical porous structure and Brønsted-Lewis dual acid sites ionic liquids for sustainable biodiesel production from acidic soybean oil

Author

Listed:
  • Zhang, Gaoqiang
  • Xie, Wenlei
  • Guo, Lihong

Abstract

In order to alleviate the mass transfer limitation of triglyceride macromolecules on the solid catalyst surface during the catalytic oil transformation process, the utilization of hierarchical porous solid catalyst is a feasible method. For reaching this goal, the hierarchical porous support of H-ZIF-8 was initially prepared by incorporating the three-dimensional ordered macro and mesoporous into the ZIF-8 using polystyrene spheres (PS) as a hard template. Subsequently, the phosphotungstate anion PW12O403− (PW) decorated sulfonated 4,4′-dipyridinium ionic liquid with Keggin structure, namely [DPySO3H]1.5PW, was encapsulated in the H-ZIF-8 support, with the formation of the novel [DPySO3H]1.5PW@H-ZIF-8 catalyst. The so-synthesized solid catalysts featured with ordered hierarchical porous structure and dual Lewis and Brønsted acidic properties, with large BET surface area of 267.38 m2/g. This catalyst had high catalytic performances for the concurrent transformation of triglycerides and free fatty acids to biodiesel in a heterogeneous manner. Under the optimal reaction parameters (methanol/oil molar ratio: 30:1; catalyst dosage: 4 wt%; reaction time: 8 h; reaction temperature: 130 °C), the oil conversion level of 91.2 % and entire conversion of free fatty acids could be attained by applying this [DPySO3H]1.5PW@H-ZIF-8 catalyst. The high catalytic activity of this catalyst was due primarily to the increased mass transfer efficiency and synergism of Lewis and Brønsted acid sites. Moreover, the good FFA and moisture-resistance capacity was also shown for this catalyst even in the case of moisture content of 5 % and FFA content of 40 % in the oil feedstock. This solid catalyst could be reused by simple filtration and displayed good reusability, still attaining over 80 % oil conversion at the fourth reuse cycles thanks to the robust interactions between the acidic active centers and the hierarchical porous support. The kinetic analysis indicated that the activation energy Ea and Arrhenius constant A for this solid acid-catalyzed transesterification process were 56.0 kJ/mol and 7.8 × 104 min−1, respectively. This research would provide a new approach for the development of hierarchical porous solid catalysts, enabling the one-step transformation of low-grade acidic oils into biodiesel in a more sustainable and environmentally friendly way.

Suggested Citation

  • Zhang, Gaoqiang & Xie, Wenlei & Guo, Lihong, 2024. "Application of metal organic frameworks ZIF-8-based solid catalyst with hierarchical porous structure and Brønsted-Lewis dual acid sites ionic liquids for sustainable biodiesel production from acidic ," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019293
    DOI: 10.1016/j.renene.2024.121861
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Pingbo & Liu, Peng & Fan, Mingming & Jiang, Pingping & Haryono, Agus, 2021. "High-performance magnetite nanoparticles catalyst for biodiesel production: Immobilization of 12-tungstophosphoric acid on SBA-15 works effectively," Renewable Energy, Elsevier, vol. 175(C), pages 244-252.
    2. Zhang, Gaoqiang & Xie, Wenlei, 2024. "Hierarchical porous SAPO-34 decorated with Mo and W oxides for concurrent transesterification-esterifications for efficient biodiesel production from acidic soybean oil," Renewable Energy, Elsevier, vol. 222(C).
    3. Ao, Supongsenla & Changmai, Bishwajit & Vanlalveni, Chhangte & Chhandama, Michael Van Lal & Wheatley, Andrew E.H. & Rokhum, Samuel Lalthazuala, 2024. "Biomass waste-derived catalysts for biodiesel production: Recent advances and key challenges," Renewable Energy, Elsevier, vol. 223(C).
    4. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
    5. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Thushari, Indika & Babel, Sandhya & Samart, Chanatip, 2019. "Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst," Renewable Energy, Elsevier, vol. 134(C), pages 125-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Wenlei & Wang, Xiangxiang & Guo, Lihong, 2024. "Utilization of Keplerate-type polyoxomolybdates {Mo132} supported on hierarchical porous SOM-ZIF-8 as reusable catalyst boosts biodiesel production from acidic soybean oils by simultaneous transesteri," Renewable Energy, Elsevier, vol. 225(C).
    2. Duan, Xiaoling & Yan, Su & Tie, Xinlong & Lei, Xidan & Liu, Zhiyi & Ma, Zhichao & Wang, Tielin & Feng, Weiliang, 2024. "Bimetallic Ce-Cr doped metal-organic frameworks as a heterogeneous catalyst for highly efficient biodiesel production from insect lipids," Renewable Energy, Elsevier, vol. 224(C).
    3. Zhang, Qiaofei & Xie, Wenlei & Li, Jiangbo & Guo, Lihong, 2023. "Bimetallic Zrx-Aly-KIT-6 modified with sulfate as acidic catalyst for biodiesel production from low-grade acidic oils," Renewable Energy, Elsevier, vol. 217(C).
    4. Suresh, Jegthiswary & Yong, Hui Syen & Talib, Nor Badariah & Matmin, Juan & Wan Azelee, Nur Izyan & Mat Rosid, Salmiah Jamal & Toemen, Susilawati, 2024. "Biomass-incorporated KNO3-C/γ-Al2O3 bifunctional catalyst for efficient biodiesel production," Renewable Energy, Elsevier, vol. 234(C).
    5. Zhang, Gaoqiang & Xie, Wenlei, 2024. "Hierarchical porous SAPO-34 decorated with Mo and W oxides for concurrent transesterification-esterifications for efficient biodiesel production from acidic soybean oil," Renewable Energy, Elsevier, vol. 222(C).
    6. Magdalena Kapłan & Kamila Klimek & Grzegorz Maj & Dmytro Zhuravel & Andrii Bondar & Viktoriia Lemeshchenko-Lagoda & Boris Boltianskyi & Larysa Boltianska & Hanna Syrotyuk & Serhiy Syrotyuk & Ryszard K, 2022. "Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment," Energies, MDPI, vol. 15(9), pages 1-28, May.
    7. Kumar, Ajeet & Vachan Tirkey, Jeevan & Kumar Shukla, Shailendra, 2021. "“Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India”," Renewable Energy, Elsevier, vol. 169(C), pages 266-282.
    8. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Yano Surya Pradana & I Gusti B. N. Makertihartha & Antonius Indarto & Tirto Prakoso & Tatang Hernas Soerawidjaja, 2024. "A Review of Biodiesel Cold Flow Properties and Its Improvement Methods: Towards Sustainable Biodiesel Application," Energies, MDPI, vol. 17(18), pages 1-43, September.
    10. Sannagoudar Basanagoudar, Arun & Maleki, Basir & Prakash Ravikumar, Mithun & Mounesh, & Kuppe, Pramoda & Kalanakoppal Venkatesh, Yatish, 2024. "Exploitation of Annona reticulata leaf extract for the synthesis of CeO2 nanoparticles as catalyst for the production of biodiesel using seed oil thereof," Energy, Elsevier, vol. 298(C).
    11. Zhu, Jishen & Jiang, Weiqiang & Yuan, Zong & Lu, Jie & Ding, Jincheng, 2024. "Esterification of tall oil fatty acid catalyzed by Zr4+-CER in fixed bed membrane reactor," Renewable Energy, Elsevier, vol. 221(C).
    12. Saikia, Kankana & Das, Arpita & Sema, Atoholi H. & Basumatary, Sanjay & Shaemningwar Moyon, N. & Mathimani, Thangavel & Rokhum, Samuel Lalthazuala, 2024. "Response surface optimization, kinetics, thermodynamics, and life cycle cost analysis of biodiesel production from Jatropha curcas oil using biomass-based functional activated carbon catalyst," Renewable Energy, Elsevier, vol. 229(C).
    13. Sandouqa, Arwa & Al-Hamamre, Zayed, 2021. "Economical evaluation of jojoba cultivation for biodiesel production in Jordan," Renewable Energy, Elsevier, vol. 177(C), pages 1116-1132.
    14. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    15. Li, Chao & Gao, Bo & Pan, Zhihui & Liu, Yuxuan & Shao, Yuewen & Gao, Guoming & Guo, Yunyu & Zhang, Shu & Li, Bin & Hu, Xun, 2024. "Roles of lignin in pore development during activation of peach wood," Renewable Energy, Elsevier, vol. 237(PB).
    16. Postaue, Najla & Schneider, Ricardo & Borba, Carlos Eduardo & da Silva, Camila & Cardozo-Filho, Lúcio, 2024. "Application of KF/waste glass catalyst in the synthesis of fatty acid esters under pressurized conditions without glycerol generation," Renewable Energy, Elsevier, vol. 234(C).
    17. Wang, Fu-Ping & Kang, Le-Le & Wang, Ya-Jun & Wang, Yu-Ran & Wang, Yi-Tong & Li, Jun-Guo & Jiang, Li-Qun & Ji, Rui & Chao, Shuai & Zhang, Jian-Bao & Fang, Zhen, 2024. "Magnetic biochar catalyst from reed straw and electric furnace dust for biodiesel production and life cycle assessment," Renewable Energy, Elsevier, vol. 227(C).
    18. Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2023. "Fabrication of surface-modified dual waste-derived biochar for biodiesel production by microwave-assisted esterification of oleic acid: Optimization, kinetics, and mechanistic studies," Renewable Energy, Elsevier, vol. 218(C).
    19. Gourich, Wail & Chan, Eng-Seng & Ng, Wei Zhe & Obon, Aaron Anthony & Maran, Kireshwen & Ong, Yi Hui & Lee, Chin Loong & Tan, Jully & Song, Cher Pin, 2022. "Life cycle benefits of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil as renewable fuel for rural electrification," Applied Energy, Elsevier, vol. 325(C).
    20. Wang, Zhihao & Xia, Shengpeng & Wang, Xiaobo & Fan, Yuyang & Zhao, Kun & Wang, Shuang & Zhao, Zengli & Zheng, Anqing, 2024. "Catalytic production of 5-hydroxymethylfurfural from lignocellulosic biomass: Recent advances, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.