IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004555.html
   My bibliography  Save this article

Impact of liquid spectrum filter and solar tracker on the overall effectiveness of a photovoltaic thermal system: An experimental investigation

Author

Listed:
  • Kumar, Sushil
  • Thakur, Robin
  • Kumar, Sushil
  • Lee, Daeho
  • Kumar, Raj

Abstract

The purpose of this experimental research is to improve the electrical and thermal efficiency of an innovative photovoltaic thermal setup equipped with a Fresnel lens, a nanofluid-based liquid spectrum filter, and a dual-axis solar tracker. The nanofluid, which is a combination of water and ethylene glycol solution with 0.3 wt% of ZnO nanoparticles, was used as a cooling medium. The experiments were conducted on different days that were generally sunny, hazy, and cloudy. The maximum output power of the setup increased by 4.8% and 23.8% from no-lens to single-lens concentration and from a single-stage lens to a two-stage lens concentration system, respectively. The integration of a two-stage system with a solar tracker further enhances the output power by 6.1%. Significant enhancement in the performance of the system was achieved using nanofluid coolant and sun-tracking technologies. The incident solar radiation was efficiently utilized, resulting in an appreciable increase in thermal and electrical efficiency of 6.96% and 28.85%, respectively. Therefore, the proposed system is efficient and suitable for solar photovoltaic thermal applications.

Suggested Citation

  • Kumar, Sushil & Thakur, Robin & Kumar, Sushil & Lee, Daeho & Kumar, Raj, 2024. "Impact of liquid spectrum filter and solar tracker on the overall effectiveness of a photovoltaic thermal system: An experimental investigation," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004555
    DOI: 10.1016/j.renene.2024.120390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yeh, Naichia, 2016. "Illumination uniformity issue explored via two-stage solar concentrator system based on Fresnel lens and compound flat concentrator," Energy, Elsevier, vol. 95(C), pages 542-549.
    2. Banakar, Ahmad & Motevali, Ali & Emad, Meysam & Ghobadian, Barat, 2017. "Co-generation of heat and power in a thermoelectric system equipped with Fresnel lens collectors using active and passive cooling techniques," Renewable Energy, Elsevier, vol. 112(C), pages 268-279.
    3. Adam, Saadelnour Abdueljabbar & Ju, Xing & Zhang, Zheyang & Abd El-Samie, Mostafa M. & Xu, Chao, 2019. "Theoretical investigation of different CPVT configurations based on liquid absorption spectral beam filter," Energy, Elsevier, vol. 189(C).
    4. Ling, Yunyi & Li, Wenjia & Jin, Jian & Yu, Yuhang & Hao, Yong & Jin, Hongguang, 2020. "A spectral-splitting photovoltaic-thermochemical system for energy storage and solar power generation," Applied Energy, Elsevier, vol. 260(C).
    5. An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
    6. Joo Hee Lee & Seong Geon Hwang & Gwi Hyun Lee, 2019. "Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids," Energies, MDPI, vol. 12(16), pages 1-16, August.
    7. Karimi, Fariborz & Xu, Hongtao & Wang, Zhiyun & Chen, Jian & Yang, Mo, 2017. "Experimental study of a concentrated PV/T system using linear Fresnel lens," Energy, Elsevier, vol. 123(C), pages 402-412.
    8. Han, Xinyue & Zhao, Xiaobo & Chen, Xiaobin, 2020. "Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling," Renewable Energy, Elsevier, vol. 162(C), pages 55-70.
    9. Singhy, Arvind & Thakur, Robin & Kumar, Raj, 2021. "Experimental analysis for co-generation of heat and power with convex lens as SOE and linear Fresnel Lens as POE using active water stream," Renewable Energy, Elsevier, vol. 163(C), pages 740-754.
    10. Brekke, Nick & Dale, John & DeJarnette, Drew & Hari, Parameswar & Orosz, Matthew & Roberts, Kenneth & Tunkara, Ebrima & Otanicar, Todd, 2018. "Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption," Renewable Energy, Elsevier, vol. 123(C), pages 683-693.
    11. Xu, Ning & Ji, Jie & Sun, Wei & Huang, Wenzhu & Li, Jing & Jin, Zhuling, 2016. "Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens," Applied Energy, Elsevier, vol. 168(C), pages 269-281.
    12. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singhy, Arvind & Thakur, Robin & Kumar, Raj, 2021. "Experimental analysis for co-generation of heat and power with convex lens as SOE and linear Fresnel Lens as POE using active water stream," Renewable Energy, Elsevier, vol. 163(C), pages 740-754.
    2. Qiu, Huichong & Liu, Hui & Xia, Qi & Lin, Zihan & Chen, Chen, 2024. "A spectral splitting CPV/T hybrid system based on wave-selecting filter coated compound parabolic concentrator and linear Fresnel reflector concentrator," Renewable Energy, Elsevier, vol. 226(C).
    3. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    6. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    7. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    8. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Deka, Manash Jyoti & Kamble, Akash Dilip & Das, Dudul & Sharma, Prabhakar & Ali, Shahadath & Kalita, Paragmoni & Bora, Bhaskor Jyoti & Kalita, Pankaj, 2024. "Enhancing the performance of a photovoltaic thermal system with phase change materials: Predictive modelling and evaluation using neural networks," Renewable Energy, Elsevier, vol. 224(C).
    10. Hooshmandzade, Niusha & Motevali, Ali & Reza Mousavi Seyedi, Seyed & Biparva, Pouria, 2021. "Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system," Applied Energy, Elsevier, vol. 304(C).
    11. Ji, Yishuang & Lv, Song & Qian, Zuoqin & Ji, Yitong & Ren, Juwen & Liang, Kaiming & Wang, Shulong, 2022. "Comparative study on cooling method for concentrating photovoltaic system," Energy, Elsevier, vol. 253(C).
    12. Tieliu Jiang & Tianlin Zou & Gang Wang, 2023. "Comparative Analysis of Thermodynamic Performances of a Linear Fresnel Reflector Photovoltaic/Thermal System Using Ag/Water and Ag-CoSO 4 /Water Nano-Fluid Spectrum Filters," Sustainability, MDPI, vol. 15(16), pages 1-16, August.
    13. Maseer, Muayad M. & Ismail, Firas Basim & Kazem, Hussein A. & Hachim, Dhafer Manea & Al-Gburi, Kumail Abdulkareem Hadi & Chaichan, Miqdam T., 2024. "Performance enhancement of photovoltaic/thermal collector semicircle absorber tubes using nanofluid and NPCM," Renewable Energy, Elsevier, vol. 233(C).
    14. Tieliu Jiang & Mingqi Liu & Jianqing Lin, 2023. "A Detailed Numerical Study of a Nanofluid-Based Photovoltaic/THERMAL Hybrid System under Non-Uniform Solar Flux Distribution," Sustainability, MDPI, vol. 15(5), pages 1-12, March.
    15. Han, Xinyue & Zhao, Xiaobo & Chen, Xiaobin, 2020. "Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling," Renewable Energy, Elsevier, vol. 162(C), pages 55-70.
    16. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
    18. Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Meng, Chunfeng, 2021. "Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems," Energy, Elsevier, vol. 215(PA).
    19. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    20. Lv, Yaya & Han, Xinyue & Chen, Xu & Yao, Yiping, 2023. "Maximizing energy output of a vapor chamber-based high concentrated PV-thermoelectric generator hybrid system," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.