IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124004208.html
   My bibliography  Save this article

Numerical modeling and dynamic response analysis of an integrated semi-submersible floating wind and aquaculture system

Author

Listed:
  • Chen, Peng
  • Kang, Yirou
  • Xu, Shijie
  • Liu, Lei
  • Cheng, Zhengshun

Abstract

Floating wind turbines (FWT) are facing the challenges of high cost of energy. Integrating floating wind with offshore aquaculture cages presents a mutually beneficial approach to address cost concerns and maximize overall benefits. This study introduces and numerically models an integrated system, encompassing a self-designed semi-submersible FWT coupled and an aquaculture cage (FWT + AC). Comprehensive, fully coupled aero-hydro-servo-elastic-mooring models for this integrated system are established. Subsequently, the numerical model of the FWT is validated against wave basin model tests. The research further discusses the coupled dynamic response characteristics of the integrated system for both the FWT with and without the aquaculture cage. The results highlight that integrating aquaculture cages leads to an increase in the mean surge response by up to 12.6%, while significantly reducing pitch motion by as much as 7.69% under combined wind, wave, and current conditions. Moreover, the mean mooring loads, particularly for line 4 which faces the direction of wind, wave, and current, do not exhibit an increase of more than 15%. This integration not only enhances the stability of wind power generation under different wind degree, but also minimally impacts the average power generation efficiency, showing a variation of only about 2% under rated wind speed. The findings provide beneficial theoretical support for the design of the integrated FWT + AC system, demonstrating the potential of such integrated systems in promoting offshore sustainable development and enhancing wind energy utilization efficiency.

Suggested Citation

  • Chen, Peng & Kang, Yirou & Xu, Shijie & Liu, Lei & Cheng, Zhengshun, 2024. "Numerical modeling and dynamic response analysis of an integrated semi-submersible floating wind and aquaculture system," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124004208
    DOI: 10.1016/j.renene.2024.120355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yichao & Li, Sunwei & Yi, Qian & Chen, Daoyi, 2016. "Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 433-449.
    2. Ho-Seong Yang & Ali Alkhabbaz & Dylan Sheneth Edirisinghe & Watchara Tongphong & Young-Ho Lee, 2022. "FOWT Stability Study According to Number of Columns Considering Amount of Materials Used," Energies, MDPI, vol. 15(5), pages 1-24, February.
    3. Alkhabbaz, Ali & Yang, Ho-Seong & Weerakoon, A.H Samitha & Lee, Young-Ho, 2021. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1398-1420.
    4. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Li, Zhanwei & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2020. "Design approaches of performance-scaled rotor for wave basin model tests of floating wind turbines," Renewable Energy, Elsevier, vol. 148(C), pages 573-584.
    5. Cheng, Zhengshun & Madsen, Helge Aagaard & Chai, Wei & Gao, Zhen & Moan, Torgeir, 2017. "A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines," Renewable Energy, Elsevier, vol. 108(C), pages 207-219.
    6. Cheng, Zhengshun & Madsen, Helge Aagaard & Gao, Zhen & Moan, Torgeir, 2017. "A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines," Renewable Energy, Elsevier, vol. 107(C), pages 604-619.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Shugang & Cheng, Youliang & Duan, Jinlong & Li, Jinyuan & Wang, Yu, 2024. "Experimental study of a semi-submersible floating wind turbine with aquaculture cages under combined wind and irregular waves," Energy, Elsevier, vol. 306(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
    2. Gaspar, J.F. & Kamarlouei, M. & Thiebaut, F. & Guedes Soares, C., 2021. "Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions," Renewable Energy, Elsevier, vol. 177(C), pages 871-883.
    3. Jiang, Yingying & Cheng, Zhengshun & Chen, Peng & Chai, Wei & Xiao, Longfei, 2023. "Performance-scaled rotor design method for model testing of floating vertical axis wind turbines in wave basins," Renewable Energy, Elsevier, vol. 219(P1).
    4. Li, Liang & Cheng, Zhengshun & Yuan, Zhiming & Gao, Yan, 2018. "Short-term extreme response and fatigue damage of an integrated offshore renewable energy system," Renewable Energy, Elsevier, vol. 126(C), pages 617-629.
    5. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    6. Yang, Can & Cheng, Zhengshun & Xiao, Longfei & Tian, Xinliang & Liu, Mingyue & Wen, Binrong, 2022. "A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins," Renewable Energy, Elsevier, vol. 187(C), pages 144-155.
    7. Ziad Maksassi & Bertrand Garnier & Ahmed Ould El Moctar & Franck Schoefs & Emmanuel Schaeffer, 2022. "Thermal Characterization and Thermal Effect Assessment of Biofouling around a Dynamic Submarine Electrical Cable," Energies, MDPI, vol. 15(9), pages 1-18, April.
    8. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    10. Deng, Wanru & Liu, Liqin & Dai, Yuanjun & Wu, Haitao & Yuan, Zhiming, 2024. "A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques," Energy, Elsevier, vol. 304(C).
    11. Chen, Jiahao & Hu, Zhiqiang & Liu, Geliang & Wan, Decheng, 2019. "Coupled aero-hydro-servo-elastic methods for floating wind turbines," Renewable Energy, Elsevier, vol. 130(C), pages 139-153.
    12. Wang, Bingkai & Sun, Wenlei & Wang, Hongwei & Xu, Tiantian & Zou, Yi, 2024. "Research on rapid calculation method of wind turbine blade strain for digital twin," Renewable Energy, Elsevier, vol. 221(C).
    13. Mareike Leimeister & Athanasios Kolios & Maurizio Collu, 2020. "Development and Verification of an Aero-Hydro-Servo-Elastic Coupled Model of Dynamics for FOWT, Based on the MoWiT Library," Energies, MDPI, vol. 13(8), pages 1-33, April.
    14. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    16. Daniela Pantusa & Antonio Francone & Giuseppe Roberto Tomasicchio, 2020. "Floating Offshore Renewable Energy Farms. A Life-Cycle Cost Analysis at Brindisi, Italy," Energies, MDPI, vol. 13(22), pages 1-22, November.
    17. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J., 2022. "Operation and maintenance for floating wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    18. Wang, Xinbao & Cai, Chang & Chen, Yewen & Chen, Yuejuan & Liu, Junbo & Xiao, Yang & Zhong, Xiaohui & Shi, Kezhong & Li, Qing'an, 2023. "Numerical verification of the dynamic aerodynamic similarity criterion for wind tunnel experiments of floating offshore wind turbines," Energy, Elsevier, vol. 283(C).
    19. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    20. Zhu, Kai & Cao, Feifei & Wang, Tianyuan & Tao, Ji & Wei, Zhiwen & Shi, Hongda, 2024. "A comparative investigation into the dynamic performance of multiple wind-wave hybrid systems utilizing a full-process analytical model," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124004208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.