IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp871-883.html
   My bibliography  Save this article

Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions

Author

Listed:
  • Gaspar, J.F.
  • Kamarlouei, M.
  • Thiebaut, F.
  • Guedes Soares, C.

Abstract

An hybrid floating platform concept, combining a wind turbine with wave energy converter devices, has been proposed. This paper conducts a further exploration of these synergies analyzing the utilization of the wave energy converters to assist the platform water ballast system on the compensation for variations on the sea state conditions. An experimental campaign has been performed for a preliminary evaluation of this approach. It is limited, for simplification, to five different sea state conditions in head wave situation. However, it allows the study of the main design principles that should be followed to develop the approach in a more complex scenario. The experimental results indicate that energy wave converters assist the water ballast system in the tested sea state conditions, and even extend the operational sea state range. Moreover, it indicates that wave energy converters located at downwind and upwind sides of the platform have different roles in the compensation of the platform dynamics. The first ones are dedicated to the production of platform restoring moments while the seconds are harvesting the power that should be supplied to the downwind of the wave converters. The case study considers the application of oil-hydraulic technology in wave energy converters.

Suggested Citation

  • Gaspar, J.F. & Kamarlouei, M. & Thiebaut, F. & Guedes Soares, C., 2021. "Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions," Renewable Energy, Elsevier, vol. 177(C), pages 871-883.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:871-883
    DOI: 10.1016/j.renene.2021.05.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121007783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2020. "Experimental analysis of wave energy converters concentrically attached on a floating offshore platform," Renewable Energy, Elsevier, vol. 152(C), pages 1171-1185.
    2. Michailides, Constantine & Gao, Zhen & Moan, Torgeir, 2016. "Experimental study of the functionality of a semisubmersible wind turbine combined with flap-type Wave Energy Converters," Renewable Energy, Elsevier, vol. 93(C), pages 675-690.
    3. Wan, Ling & Gao, Zhen & Moan, Torgeir & Lugni, Claudio, 2016. "Experimental and numerical comparisons of hydrodynamic responses for a combined wind and wave energy converter concept under operational conditions," Renewable Energy, Elsevier, vol. 93(C), pages 87-100.
    4. Muliawan, Made Jaya & Karimirad, Madjid & Moan, Torgeir, 2013. "Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter," Renewable Energy, Elsevier, vol. 50(C), pages 47-57.
    5. Ren, Nianxin & Ma, Zhe & Shan, Baohua & Ning, Dezhi & Ou, Jinping, 2020. "Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions," Renewable Energy, Elsevier, vol. 151(C), pages 966-974.
    6. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    7. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    8. Liu, Yichao & Li, Sunwei & Yi, Qian & Chen, Daoyi, 2016. "Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 433-449.
    9. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
    10. Cheng, Zhengshun & Madsen, Helge Aagaard & Chai, Wei & Gao, Zhen & Moan, Torgeir, 2017. "A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines," Renewable Energy, Elsevier, vol. 108(C), pages 207-219.
    11. Hyebin Lee & Sunny Kumar Poguluri & Yoon Hyeok Bae, 2018. "Performance Analysis of Multiple Wave Energy Converters Placed on a Floating Platform in the Frequency Domain," Energies, MDPI, vol. 11(2), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luan, Zhengxiao & Chen, Bangqi & Jin, Ruijia & He, Guanghua & Ghassemi, Hassan & Jing, Penglin, 2024. "Validation of a numerical wave tank based on overset mesh for the wavestar-like wave energy converter in the South China Sea," Energy, Elsevier, vol. 290(C).
    2. Rony, J.S. & Karmakar, D., 2024. "Hydrodynamic response analysis of a hybrid TLP and heaving-buoy wave energy converter with PTO damping," Renewable Energy, Elsevier, vol. 226(C).
    3. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    4. Chen, Zheng & Sun, Jili & Yang, Jingqing & Sun, Yong & Chen, Qian & Zhao, Hongyang & Qian, Peng & Si, Yulin & Zhang, Dahai, 2024. "Experimental and numerical analysis of power take-off control effects on the dynamic performance of a floating wind-wave combined system," Renewable Energy, Elsevier, vol. 226(C).
    5. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    6. Pavlidou, Lamprini & Angelides, Demos C., 2022. "A novel two-objective optimization computational framework for a two-body heaving wave energy converter," Renewable Energy, Elsevier, vol. 191(C), pages 510-534.
    7. Xianxiong Zhang & Bin Li & Zhenwei Hu & Jiang Deng & Panpan Xiao & Mingsheng Chen, 2022. "Research on Size Optimization of Wave Energy Converters Based on a Floating Wind-Wave Combined Power Generation Platform," Energies, MDPI, vol. 15(22), pages 1-16, November.
    8. Cao, Feifei & Yu, Mingqi & Han, Meng & Liu, Bing & Wei, Zhiwen & Jiang, Juan & Tian, Huiyuan & Shi, Hongda & Li, Yanni, 2023. "WECs microarray effect on the coupled dynamic response and power performance of a floating combined wind and wave energy system," Renewable Energy, Elsevier, vol. 219(P2).
    9. Neisi, Atefeh & Ghafari, Hamid Reza & Ghassemi, Hassan & Moan, Torgeir & He, Guanghua, 2023. "Power extraction and dynamic response of hybrid semi-submersible yaw-drive flap combination (SYFC)," Renewable Energy, Elsevier, vol. 218(C).
    10. Zhou, Binzhen & Hu, Jianjian & Jin, Peng & Sun, Ke & Li, Ye & Ning, Dezhi, 2023. "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system," Energy, Elsevier, vol. 265(C).
    11. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2022. "Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform," Renewable Energy, Elsevier, vol. 188(C), pages 145-163.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    2. Li, Yanni & Yan, Shiqiang & Shi, Hongda & Ma, Qingwei & Li, Demin & Cao, Feifei, 2023. "Hydrodynamic analysis of a novel multi-buoy wind-wave energy system," Renewable Energy, Elsevier, vol. 219(P1).
    3. Zhou, Binzhen & Hu, Jianjian & Jin, Peng & Sun, Ke & Li, Ye & Ning, Dezhi, 2023. "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system," Energy, Elsevier, vol. 265(C).
    4. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    5. da Silva, L.S.P. & Sergiienko, N.Y. & Cazzolato, B. & Ding, B., 2022. "Dynamics of hybrid offshore renewable energy platforms: Heaving point absorbers connected to a semi-submersible floating offshore wind turbine," Renewable Energy, Elsevier, vol. 199(C), pages 1424-1439.
    6. Cao, Feifei & Yu, Mingqi & Han, Meng & Liu, Bing & Wei, Zhiwen & Jiang, Juan & Tian, Huiyuan & Shi, Hongda & Li, Yanni, 2023. "WECs microarray effect on the coupled dynamic response and power performance of a floating combined wind and wave energy system," Renewable Energy, Elsevier, vol. 219(P2).
    7. Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
    8. Wei, Zhiwen & Shi, Hongda & Cao, Feifei & Yu, Mingqi & Li, Ming & Chen, Zhen & Liu, Peng, 2024. "Study on the power performance of wave energy converters mounted around an offshore wind turbine jacket platform," Renewable Energy, Elsevier, vol. 221(C).
    9. David M. Skene & Nataliia Sergiienko & Boyin Ding & Benjamin Cazzolato, 2021. "The Prospect of Combining a Point Absorber Wave Energy Converter with a Floating Offshore Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-24, November.
    10. Zhu, Kai & Shi, Hongda & Zheng, Siming & Michele, Simone & Cao, Feifei, 2023. "Hydrodynamic analysis of hybrid system with wind turbine and wave energy converter," Applied Energy, Elsevier, vol. 350(C).
    11. Neisi, Atefeh & Ghafari, Hamid Reza & Ghassemi, Hassan & Moan, Torgeir & He, Guanghua, 2023. "Power extraction and dynamic response of hybrid semi-submersible yaw-drive flap combination (SYFC)," Renewable Energy, Elsevier, vol. 218(C).
    12. Zhou, Binzhen & Hu, Jianjian & Wang, Yu & Jin, Peng & Jing, Fengmei & Ning, Dezhi, 2023. "Coupled dynamic and power generation characteristics of a hybrid system consisting of a semi-submersible wind turbine and an array of heaving wave energy converters," Renewable Energy, Elsevier, vol. 214(C), pages 23-38.
    13. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2022. "Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform," Renewable Energy, Elsevier, vol. 188(C), pages 145-163.
    14. Payam Aboutalebi & Fares M’zoughi & Izaskun Garrido & Aitor J. Garrido, 2021. "Performance Analysis on the Use of Oscillating Water Column in Barge-Based Floating Offshore Wind Turbines," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    15. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    16. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    17. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.
    18. Wang, Yize & Liu, Zhenqing & Wang, Hao, 2022. "Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm," Energy, Elsevier, vol. 239(PA).
    19. Rony, J.S. & Karmakar, D., 2024. "Hydrodynamic response analysis of a hybrid TLP and heaving-buoy wave energy converter with PTO damping," Renewable Energy, Elsevier, vol. 226(C).
    20. Fares M’zoughi & Payam Aboutalebi & Izaskun Garrido & Aitor J. Garrido & Manuel De La Sen, 2021. "Complementary Airflow Control of Oscillating Water Columns for Floating Offshore Wind Turbine Stabilization," Mathematics, MDPI, vol. 9(12), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:871-883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.