IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1653-d756423.html
   My bibliography  Save this article

FOWT Stability Study According to Number of Columns Considering Amount of Materials Used

Author

Listed:
  • Ho-Seong Yang

    (Department of Mechanical Engineering, Korea Maritime and Ocean University, Busan 49112, Korea
    Interdisciplinary Major of Ocean Renewable Energy Engineering, Graduate School, Korea Maritime and Ocean University, Busan 49112, Korea)

  • Ali Alkhabbaz

    (Department of Mechanical Engineering, Korea Maritime and Ocean University, Busan 49112, Korea)

  • Dylan Sheneth Edirisinghe

    (Department of Mechanical Engineering, Korea Maritime and Ocean University, Busan 49112, Korea
    Interdisciplinary Major of Ocean Renewable Energy Engineering, Graduate School, Korea Maritime and Ocean University, Busan 49112, Korea)

  • Watchara Tongphong

    (Department of Mechanical Engineering, Korea Maritime and Ocean University, Busan 49112, Korea)

  • Young-Ho Lee

    (Department of Mechanical Engineering, Korea Maritime and Ocean University, Busan 49112, Korea
    Interdisciplinary Major of Ocean Renewable Energy Engineering, Graduate School, Korea Maritime and Ocean University, Busan 49112, Korea)

Abstract

Considering stability and fabrication cost, 3–4 columns are usually adopted for semi-submersible platform designs. Although increasing the number of columns provides more stability for both floating platform and system as a whole, it is generally not economically viable. In this respect, the present work provides a high-fidelity analysis of semi-submersible platform stability and hydrodynamic response for different design concepts. The number of columns was considered as the main design parameter and was varied from 3–6 columns. The semi-submersible weight was kept constant during the simulation period by changing the column diameter and amount of ballast water. The investigation was carried out using the potential code Orcawave, the results of which were input directly to the engineering tool OrcaFlex. Four different types of semi-submersible platforms with a varying number of columns were tested and compared under extreme environmental conditions in order to ensure their stability and hydrodynamic response. The simulation findings revealed that platform stability was more affected by the geometrical features of the floater than by the number of columns. Furthermore, the number of columns did not have a significant impact on hydrodynamic behavior for the same platform geometry.

Suggested Citation

  • Ho-Seong Yang & Ali Alkhabbaz & Dylan Sheneth Edirisinghe & Watchara Tongphong & Young-Ho Lee, 2022. "FOWT Stability Study According to Number of Columns Considering Amount of Materials Used," Energies, MDPI, vol. 15(5), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1653-:d:756423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann & Matthias Rillig, 2014. "Distinguishing variability from uncertainty," Nature Climate Change, Nature, vol. 4(3), pages 153-153, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziad Maksassi & Bertrand Garnier & Ahmed Ould El Moctar & Franck Schoefs & Emmanuel Schaeffer, 2022. "Thermal Characterization and Thermal Effect Assessment of Biofouling around a Dynamic Submarine Electrical Cable," Energies, MDPI, vol. 15(9), pages 1-18, April.
    2. Li, Wei & Wang, Shuaishuai & Moan, Torgeir & Gao, Zhen & Gao, Shan, 2024. "Global design methodology for semi-submersible hulls of floating wind turbines," Renewable Energy, Elsevier, vol. 225(C).
    3. Tan, Zhe & Sun, Peng-Nan & Liu, Nian-Nian & Li, Zhe & Lyu, Hong-Guan & Zhu, Rong-Hua, 2023. "SPH simulation and experimental validation of the dynamic response of floating offshore wind turbines in waves," Renewable Energy, Elsevier, vol. 205(C), pages 393-409.
    4. Chen, Peng & Kang, Yirou & Xu, Shijie & Liu, Lei & Cheng, Zhengshun, 2024. "Numerical modeling and dynamic response analysis of an integrated semi-submersible floating wind and aquaculture system," Renewable Energy, Elsevier, vol. 225(C).
    5. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Camici & L. Brocca & T. Moramarco, 2017. "Accuracy versus variability of climate projections for flood assessment in central Italy," Climatic Change, Springer, vol. 141(2), pages 273-286, March.
    2. Dominic Woolf & Johannes Lehmann & David R. Lee, 2016. "Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    3. Julian Grenz & Moritz Ostermann & Karoline Käsewieter & Felipe Cerdas & Thorsten Marten & Christoph Herrmann & Thomas Tröster, 2023. "Integrating Prospective LCA in the Development of Automotive Components," Sustainability, MDPI, vol. 15(13), pages 1-26, June.
    4. Caldeira, Carla & Queirós, João & Noshadravan, Arash & Freire, Fausto, 2016. "Incorporating uncertainty in the life cycle assessment of biodiesel from waste cooking oil addressing different collection systems," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 83-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1653-:d:756423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.