IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v163y2022ics1364032122004038.html
   My bibliography  Save this article

Operation and maintenance for floating wind turbines: A review

Author

Listed:
  • McMorland, J.
  • Collu, M.
  • McMillan, D.
  • Carroll, J.

Abstract

This paper reviews the existing literature surrounding floating offshore wind (FOW) operations and maintenance (O&M) models. A review of the technology is presented with a comparison with current practise for bottom-fixed offshore wind O&M activities. This article divides existing publications into the following categories: cost modelling, O&M modelling, and safety/limiting factors. A review of the case studies used within these publications shows trends towards development in Northern Europe. Factors considered during cost modelling are discussed with a review of levelised cost of energy results for the three main types of floating support structure. The key O&M inputs for FOW applications are identified and then analysed detailing the key differences between floating and bottom-fixed applications. Finally, the publications detail the impact of the motion of the turbine on O&M activities are discussed. Key areas of FOW O&M research are identified with details of current research gaps and recommendations for future work.

Suggested Citation

  • McMorland, J. & Collu, M. & McMillan, D. & Carroll, J., 2022. "Operation and maintenance for floating wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:rensus:v:163:y:2022:i:c:s1364032122004038
    DOI: 10.1016/j.rser.2022.112499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122004038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    2. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    3. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    4. Liu, Yichao & Li, Sunwei & Yi, Qian & Chen, Daoyi, 2016. "Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 433-449.
    5. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    6. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    7. Tobi Elusakin & Mahmood Shafiee & Tosin Adedipe & Fateme Dinmohammadi, 2021. "A Stochastic Petri Net Model for O&M Planning of Floating Offshore Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-18, February.
    8. Laura Castro-Santos & Elson Martins & C. Guedes Soares, 2016. "Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm," Energies, MDPI, vol. 9(5), pages 1-27, April.
    9. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
    10. Laura, Castro-Santos & Vicente, Diaz-Casas, 2014. "Life-cycle cost analysis of floating offshore wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    2. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    3. Daniela Pantusa & Antonio Francone & Giuseppe Roberto Tomasicchio, 2020. "Floating Offshore Renewable Energy Farms. A Life-Cycle Cost Analysis at Brindisi, Italy," Energies, MDPI, vol. 13(22), pages 1-22, November.
    4. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Jiang, Zhiyu, 2021. "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Shamsan Alsubal & Wesam Salah Alaloul & Eu Lim Shawn & M. S. Liew & Pavitirakumar Palaniappan & Muhammad Ali Musarat, 2021. "Life Cycle Cost Assessment of Offshore Wind Farm: Kudat Malaysia Case," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    7. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    8. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    9. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
    10. Laura Castro-Santos & Almudena Filgueira-Vizoso, 2019. "A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    11. Walgern, Julia & Peters, Lennart & Madlener, Reinhard, 2017. "Economic Evaluation of Maintenance Strategies for Offshore Wind Turbines Based on Condition Monitoring Systems," FCN Working Papers 8/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    12. Lopez, Javier Contreras & Kolios, Athanasios, 2024. "An autonomous decision-making agent for offshore wind turbine blades under leading edge erosion," Renewable Energy, Elsevier, vol. 227(C).
    13. Pan, Lin & Wang, Xudong, 2020. "Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control," Renewable Energy, Elsevier, vol. 159(C), pages 221-237.
    14. Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, vol. 13(4), pages 1-19, February.
    15. Mytilinou, Varvara & Kolios, Athanasios J., 2019. "Techno-economic optimisation of offshore wind farms based on life cycle cost analysis on the UK," Renewable Energy, Elsevier, vol. 132(C), pages 439-454.
    16. Xiaobin Qu & Yingxue Yao & Jianjun Du, 2021. "Conceptual Design and Hydrodynamic Performance of a Modular Hybrid Floating Foundation," Energies, MDPI, vol. 14(22), pages 1-17, November.
    17. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    19. Koh, J.H. & Ng, E.Y.K., 2016. "Downwind offshore wind turbines: Opportunities, trends and technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 797-808.
    20. Centeno-Telleria, Manu & Yue, Hong & Carrol, James & Penalba, Markel & Aizpurua, Jose I., 2024. "Impact of operations and maintenance on the energy production of floating offshore wind farms across the North Sea and the Iberian Peninsula," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:163:y:2022:i:c:s1364032122004038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.