IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003537.html
   My bibliography  Save this article

Optimization design of a hybrid thermal runaway propagation mitigation system for power battery module using high-dimensional surrogate models

Author

Listed:
  • Zhang, Wencan
  • Li, Xingyao
  • Liu, Guote
  • Ouyang, Nan
  • Yuan, Jiangfeng
  • Xie, Yi
  • Wu, Weixiong

Abstract

The demand for high energy density in lithium-ion battery packs for electric vehicles poses a challenge to maintaining its optimum operating temperature while reducing the risk of thermal runaway (TR) propagation. This study proposes a novel hybrid TR propagation mitigation system that balances heat transfer and thermal insulation requirements using low and high thermal conductivity phase change materials (PCM), heat pipes (HP), and air-cooling. The design and optimization of such a mitigation system are complex due to the many design parameters involved. The Adaptive-Kriging-High dimensional model representation (Adaptive-Kriging-HDMR) is used to establish a surrogate model of the system, and the sensitivity of the system's design parameters is evaluated with the maximum battery temperature and the system weight as the targets, thereby improving the efficiency of model calculation and reducing the dimension of optimization parameters. Then, the design of the sensitive parameters is optimized using an extended elitist non‐dominated sorting genetic algorithm (E-NSGA-II) multi-objective optimization algorithm. The results show that the modeling difficulty and optimization calculation time are significantly reduced by using a surrogate model. The calculation time for a single surrogate model only takes a few seconds instead of several hours for the original three-dimensional heat transfer and flow calculation. The thermal conductivity of high thermal conductivity-PCM, the distance between battery and low thermal conductivity-PCM, the battery spacing, and the HP length significantly affect the system. The optimized system substantially reduces the overall weight of the battery system while ensuring its good heat dissipation capability. In the case of TR in a single battery, the system succeeds in limiting the TR propagation to the same row, with the maximum battery temperature in the second row being only 64.3 °C, well below the battery TR trigger point. Under more severe conditions, such as TR occurring in two batteries simultaneously, the maximum battery temperature in the second row is 155.5 °C, and no TR spreads to the adjacent row. This study provides a rapid and effective method for designing a TR propagation mitigation system. It can serve as a reference for the engineering design and optimization of battery thermal management systems.

Suggested Citation

  • Zhang, Wencan & Li, Xingyao & Liu, Guote & Ouyang, Nan & Yuan, Jiangfeng & Xie, Yi & Wu, Weixiong, 2024. "Optimization design of a hybrid thermal runaway propagation mitigation system for power battery module using high-dimensional surrogate models," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003537
    DOI: 10.1016/j.renene.2024.120288
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Deng & Chulheung Bae & James Marcicki & Alvaro Masias & Theodore Miller, 2018. "Safety modelling and testing of lithium-ion batteries in electrified vehicles," Nature Energy, Nature, vol. 3(4), pages 261-266, April.
    2. Coman, Paul T. & Darcy, Eric C. & Veje, Christian T. & White, Ralph E., 2017. "Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway," Applied Energy, Elsevier, vol. 203(C), pages 189-200.
    3. Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
    4. Saw, Lip Huat & Ye, Yonghuang & Tay, Andrew A.O. & Chong, Wen Tong & Kuan, Seng How & Yew, Ming Chian, 2016. "Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling," Applied Energy, Elsevier, vol. 177(C), pages 783-792.
    5. Liu, Fen & Wang, Jianfeng & Yang, Na & Wang, Fuqiang & Chen, Yaping & Lu, Dongchen & Liu, Hui & Du, Qian & Ren, Xutong & Shi, Mengyu, 2022. "Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers," Energy, Elsevier, vol. 257(C).
    6. Ling, Ziye & Lin, Wenzhu & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Computationally efficient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment," Applied Energy, Elsevier, vol. 259(C).
    7. Zhao, Rui & Gu, Junjie & Liu, Jie, 2017. "Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design," Energy, Elsevier, vol. 135(C), pages 811-822.
    8. Zhao, Rui & Liu, Jie & Gu, Junjie, 2016. "Simulation and experimental study on lithium ion battery short circuit," Applied Energy, Elsevier, vol. 173(C), pages 29-39.
    9. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    10. Ye, Jiana & Chen, Haodong & Wang, Qingsong & Huang, Peifeng & Sun, Jinhua & Lo, Siuming, 2016. "Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions," Applied Energy, Elsevier, vol. 182(C), pages 464-474.
    11. Lin, Mingqiang & Yan, Chenhao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2022. "Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression," Energy, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    2. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    3. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    4. Lin, Shao & Ling, Ziye & Li, Suimin & Cai, Chuyue & Zhang, Zhengguo & Fang, Xiaoming, 2023. "Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage," Energy, Elsevier, vol. 266(C).
    5. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    6. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    8. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    9. Seham Shahid & Martin Agelin-Chaab, 2017. "Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries," Energies, MDPI, vol. 10(8), pages 1-17, August.
    10. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).
    11. Mahesh Suresh Patil & Satyam Panchal & Namwon Kim & Moo-Yeon Lee, 2018. "Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces," Energies, MDPI, vol. 11(10), pages 1-19, September.
    12. Xinyu Liu & Zhifu Zhou & Weitao Wu & Linsong Gao & Yang Li & Heng Huang & Zheng Huang & Yubai Li & Yongchen Song, 2022. "Three-Dimensional Modeling for the Internal Shorting Caused Thermal Runaway Process in 20Ah Lithium-Ion Battery," Energies, MDPI, vol. 15(19), pages 1-25, September.
    13. Lee, Seunghoon & Lee, Hyoseong & Jun, Yong Joo & Lee, Hoseong, 2024. "Hybrid battery thermal management system coupled with paraffin/copper foam composite phase change material," Applied Energy, Elsevier, vol. 353(PA).
    14. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    15. Panchal, S. & Dincer, I. & Agelin-Chaab, M. & Fraser, R. & Fowler, M., 2016. "Experimental and simulated temperature variations in a LiFePO4-20Ah battery during discharge process," Applied Energy, Elsevier, vol. 180(C), pages 504-515.
    16. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    17. Mao, Ning & Zhang, Teng & Wang, Zhirong & Gadkari, Siddharth & Wang, Junling & He, Tengfei & Gao, Tianfeng & Cai, Qiong, 2023. "Revealing the thermal stability and component heat contribution ratio of overcharged lithium-ion batteries during thermal runaway," Energy, Elsevier, vol. 263(PD).
    18. Xia, Quan & Ren, Yi & Wang, Zili & Yang, Dezhen & Yan, Peiyu & Wu, Zeyu & Sun, Bo & Feng, Qiang & Qian, Cheng, 2023. "Safety risk assessment method for thermal abuse of lithium-ion battery pack based on multiphysics simulation and improved bisection method," Energy, Elsevier, vol. 264(C).
    19. Akinlabi, A.A. Hakeem & Solyali, Davut, 2020. "Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    20. Wang, Zhi & Wang, Jian, 2020. "Investigation of external heating-induced failure propagation behaviors in large-size cell modules with different phase change materials," Energy, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.