The optimal micro- and meso-pores oriented development of Eucommia ulmoides oliver wood derived activated carbons for capacitive performance
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.120209
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cheng, Jie & Hu, Sheng-Chun & Sun, Guo-Tao & Kang, Kang & Zhu, Ming-Qiang & Geng, Zeng-Chao, 2021. "Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application," Energy, Elsevier, vol. 215(PB).
- Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Sun, Guo-Tao & Hu, Li-Le & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2021. "Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications," Renewable Energy, Elsevier, vol. 177(C), pages 82-94.
- Zhang, Wenli & Lin, Nan & Liu, Debo & Xu, Jinhui & Sha, Jinxin & Yin, Jian & Tan, Xiaobo & Yang, Huiping & Lu, Haiyan & Lin, Haibo, 2017. "Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications," Energy, Elsevier, vol. 128(C), pages 618-625.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Sun, Guo-Tao & Hu, Li-Le & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2021. "Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications," Renewable Energy, Elsevier, vol. 177(C), pages 82-94.
- Ozpinar, Pelin & Dogan, Ceren & Demiral, Hakan & Morali, Ugur & Erol, Salim & Samdan, Canan & Yildiz, Derya & Demiral, Ilknur, 2022. "Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis," Renewable Energy, Elsevier, vol. 189(C), pages 535-548.
- Sakthivel, Mani & Ramki, Settu & Chen, Shen-Ming & Ho, Kuo-Chuan, 2022. "Defect rich Se–CoWS2 as anode and banana flower skin-derived activated carbon channels with interconnected porous structure as cathode materials for asymmetric supercapacitor application," Energy, Elsevier, vol. 257(C).
- Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
- Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
- Liu, Hongwei & Wang, Yongzhen & Lv, Liang & Liu, Xiao & Wang, Ziqi & Liu, Jun, 2023. "Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors," Energy, Elsevier, vol. 269(C).
- Bao, Jinpeng & Liang, Chen & Lu, Haiyan & Lin, Haibo & Shi, Zhan & Feng, Shouhua & Bu, Qijing, 2018. "Facile fabrication of porous carbon microtube with surrounding carbon skeleton for long-life electrochemical capacitive energy storage," Energy, Elsevier, vol. 155(C), pages 899-908.
- Cheng, Jie & Hu, Sheng-Chun & Sun, Guo-Tao & Kang, Kang & Zhu, Ming-Qiang & Geng, Zeng-Chao, 2021. "Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application," Energy, Elsevier, vol. 215(PB).
- Lv, Chunfei & Ma, Xiaojun & Guo, Ranran & Li, Dongna & Hua, Xuewen & Jiang, Tianyu & Li, Hongpeng & Liu, Yang, 2023. "Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor," Energy, Elsevier, vol. 270(C).
- Xiong, Chuhao & Wu, Jin & Ji, Zhengang & Wu, Ye & Liu, Dong, 2024. "Unraveling the role of alkali metal in the biochar for enhancing the chemical looping ammonia generation efficiency," Renewable Energy, Elsevier, vol. 220(C).
- Zhang, Xingyan & Zhao, Wen & Wei, Lu & Jin, Yiyi & Hou, Jie & Wang, Xiaoxue & Guo, Xin, 2019. "In-plane flexible solid-state microsupercapacitors for on-chip electronics," Energy, Elsevier, vol. 170(C), pages 338-348.
- Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
- Jiang, Zhuosheng & Zhai, Shengli & Huang, Mingzhi & Songsiriritthigul, Prayoon & Aung, Su Htike & Oo, Than Zaw & Luo, Min & Chen, Fuming, 2021. "3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics," Energy, Elsevier, vol. 227(C).
- Do-Gun Kim & Shinnee Boldbaatar & Seok-Oh Ko, 2022. "Enhanced Adsorption of Tetracycline by Thermal Modification of Coconut Shell-Based Activated Carbon," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
- Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
- Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Muhammad Roil Bilad & Muhammad T. Afzal & Ashak Mahmud Parvez & Farah Amelia Shahirah Roslan & Syahirah Abdul Rahim & Vimmal Desiga Vinayagam & Haruna K, 2021. "Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
- Meng, Qi & Chen, Wenjiao & Wu, Linzhen & Lei, Jiehong & Liu, Xiaonan & Zhu, Wenkun & Duan, Tao, 2019. "A strategy of making waste profitable: Nitrogen doped cigarette butt derived carbon for high performance supercapacitors," Energy, Elsevier, vol. 189(C).
- Sun, Bingkang & Zhang, Xiaoyun & Fan, Xing & Wang, Ruiyu & Bai, Hongcun & Wei, Xianyong, 2022. "Interface modification based on MnO2@N-doped activated carbon composites for flexible solid-state asymmetric supercapacitors," Energy, Elsevier, vol. 249(C).
- Wang, Liangcai & Xie, Linen & Wu, Jielong & Li, Xiang & Ma, Huanhuan & Zhou, Jianbin, 2022. "Sequential H3PO4–CO2 assisted synthesis of lignin-derived porous carbon: CO2 activation kinetics investigation and textural properties regulation," Renewable Energy, Elsevier, vol. 191(C), pages 639-648.
- Sun, Hao & Ma, Mingzhe & Fan, Mengmeng & Sun, Kang & Xu, Wei & Wang, Kui & Li, Baojun & Jiang, Jianchun, 2022. "Controllable preparation of biomass derived mesoporous activated carbon supported nano-CaO catalysts for biodiesel production," Energy, Elsevier, vol. 261(PB).
More about this item
Keywords
Activated carbon; Oriented pore development; Supercapacitance; Electrochemical performance; Eucommia wood;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s096014812400274x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.