IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp639-648.html
   My bibliography  Save this article

Sequential H3PO4–CO2 assisted synthesis of lignin-derived porous carbon: CO2 activation kinetics investigation and textural properties regulation

Author

Listed:
  • Wang, Liangcai
  • Xie, Linen
  • Wu, Jielong
  • Li, Xiang
  • Ma, Huanhuan
  • Zhou, Jianbin

Abstract

Finding a novel approach for controlling the textural properties of porous carbon and further understanding its activation process have long been highly desirable. Here, sequential H3PO4–CO2 activation and thermogravimetric analysis (TGA) were used to fabricate lignin-derived porous carbons with controllable textural properties and deeply understand the activation process of CO2, respectively. In view of performance and cost, the H3PO4 activation temperature of lignin was 590 °C (the as-obtained porous carbon was named PC-P). CO2 activation temperatures above 800 °C were preferable for PC-P, where the activation process was a chemical reaction control process. Besides, the reactivity index was linearly positively related to the specific surface area. Compared with PC-P, the specific surface area, total pore volume (Vt), micropore volume (Vmicro), mesopore volume (Vmeso), and macropore volume (Vmacro) of PC-PT (the as-synthesized porous carbon derived from PC-P at T °C in a CO2 atmosphere was named PC-PT) were all significantly increased. In other words, the approach of sequential H3PO4–CO2 activation target regulates textural properties was feasible.

Suggested Citation

  • Wang, Liangcai & Xie, Linen & Wu, Jielong & Li, Xiang & Ma, Huanhuan & Zhou, Jianbin, 2022. "Sequential H3PO4–CO2 assisted synthesis of lignin-derived porous carbon: CO2 activation kinetics investigation and textural properties regulation," Renewable Energy, Elsevier, vol. 191(C), pages 639-648.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:639-648
    DOI: 10.1016/j.renene.2022.04.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Wenli & Lin, Nan & Liu, Debo & Xu, Jinhui & Sha, Jinxin & Yin, Jian & Tan, Xiaobo & Yang, Huiping & Lu, Haiyan & Lin, Haibo, 2017. "Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications," Energy, Elsevier, vol. 128(C), pages 618-625.
    2. Rabinovich, Mikhail L. & Fedoryak, Olesya & Dobele, Galina & Andersone, Anna & Gawdzik, Barbara & Lindström, Mikael E. & Sevastyanova, Olena, 2016. "Carbon adsorbents from industrial hydrolysis lignin: The USSR/Eastern European experience and its importance for modern biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1008-1024.
    3. Wang, Miao & Li, Pan & Yu, Faquan, 2021. "Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage," Renewable Energy, Elsevier, vol. 172(C), pages 599-605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dowaki, Taishi & Guo, Haixin & Smith, Richard Lee, 2022. "Lignin-derived biochar solid acid catalyst for fructose conversion into 5-ethoxymethylfurfural," Renewable Energy, Elsevier, vol. 199(C), pages 1534-1542.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakthivel, Mani & Ramki, Settu & Chen, Shen-Ming & Ho, Kuo-Chuan, 2022. "Defect rich Se–CoWS2 as anode and banana flower skin-derived activated carbon channels with interconnected porous structure as cathode materials for asymmetric supercapacitor application," Energy, Elsevier, vol. 257(C).
    2. Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Luo, Xiaoyu & Chen, Ying & Wu, Shuying & Chen, Wei, 2024. "N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature," Energy, Elsevier, vol. 286(C).
    3. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.
    4. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    5. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Sun, Guo-Tao & Hu, Li-Le & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2021. "Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications," Renewable Energy, Elsevier, vol. 177(C), pages 82-94.
    6. Nadia Cerone & Francesco Zimbardi, 2018. "Gasification of Agroresidues for Syngas Production," Energies, MDPI, vol. 11(5), pages 1-18, May.
    7. Bao, Jinpeng & Liang, Chen & Lu, Haiyan & Lin, Haibo & Shi, Zhan & Feng, Shouhua & Bu, Qijing, 2018. "Facile fabrication of porous carbon microtube with surrounding carbon skeleton for long-life electrochemical capacitive energy storage," Energy, Elsevier, vol. 155(C), pages 899-908.
    8. Cheng, Jie & Hu, Sheng-Chun & Sun, Guo-Tao & Kang, Kang & Zhu, Ming-Qiang & Geng, Zeng-Chao, 2021. "Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application," Energy, Elsevier, vol. 215(PB).
    9. Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Muhammad Roil Bilad & Muhammad T. Afzal & Ashak Mahmud Parvez & Farah Amelia Shahirah Roslan & Syahirah Abdul Rahim & Vimmal Desiga Vinayagam & Haruna K, 2021. "Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    10. Meng, Qi & Chen, Wenjiao & Wu, Linzhen & Lei, Jiehong & Liu, Xiaonan & Zhu, Wenkun & Duan, Tao, 2019. "A strategy of making waste profitable: Nitrogen doped cigarette butt derived carbon for high performance supercapacitors," Energy, Elsevier, vol. 189(C).
    11. Wu, Taofen & Wu, Dan & Deng, Yong & Luo, Dajun & Wu, Fuzhong & Dai, Xinyi & Lu, Jia & Sun, Shuya, 2024. "Three-dimensional network-based composite phase change materials: Construction, structure, performance and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Chen, Ying & Wu, Shuying & Yang, Heng, 2023. "Development of hierarchical MOF-based composite phase change materials with enhanced latent heat storage for low-temperature battery thermal optimization," Energy, Elsevier, vol. 283(C).
    13. Zhang, Xingyan & Zhao, Wen & Wei, Lu & Jin, Yiyi & Hou, Jie & Wang, Xiaoxue & Guo, Xin, 2019. "In-plane flexible solid-state microsupercapacitors for on-chip electronics," Energy, Elsevier, vol. 170(C), pages 338-348.
    14. Ance Plavniece & Galina Dobele & Aleksandrs Volperts & Aivars Zhurinsh, 2022. "Hydrothermal Carbonization vs. Pyrolysis: Effect on the Porosity of the Activated Carbon Materials," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    15. Bao, Qi & Zhang, Min & Li, Ju & Wang, Xiuzhang & Zhu, Mingqiang & Sun, Guotao, 2024. "The optimal micro- and meso-pores oriented development of Eucommia ulmoides oliver wood derived activated carbons for capacitive performance," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:639-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.