IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123016051.html
   My bibliography  Save this article

Unraveling the role of alkali metal in the biochar for enhancing the chemical looping ammonia generation efficiency

Author

Listed:
  • Xiong, Chuhao
  • Wu, Jin
  • Ji, Zhengang
  • Wu, Ye
  • Liu, Dong

Abstract

Chemical looping ammonia generation (CLAG), efficiently converting C-based material, N2 and H2O into NH3 and CO, is considered to be one of the promising NH3 production technologies. Using biochar as the C-based material is supposed to further improve the “green” level of NH3 but there is rare report about that. This paper was desired to fill this gap. Peanut shell biochar, lotus shell biochar and corncob biochar were used to study the chemical looping ammonia generation performances of the N-support. It was found that metals contained in the biochar significantly affected the nitridation process; alkali metals were simulative while alkaline-earth metals were inhibitory, which indicated that the corncob biochar exhibit the best nitriding properties. In addition, K, with the best positive effect for nitridation, was found to be with negligible negative effect for ammoniation. Furthermore, the carbon conversion efficiency and NH3 production could be still improved by 8.46 % and 9.23 % if the corncob biochar was modified with 2 wt% K (simulating 120 cycles of nitridation/ammoniation reaction). The obtained results indicated that the biochar is a promising carbon source for CLAG.

Suggested Citation

  • Xiong, Chuhao & Wu, Jin & Ji, Zhengang & Wu, Ye & Liu, Dong, 2024. "Unraveling the role of alkali metal in the biochar for enhancing the chemical looping ammonia generation efficiency," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016051
    DOI: 10.1016/j.renene.2023.119690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Jie & Hu, Sheng-Chun & Sun, Guo-Tao & Kang, Kang & Zhu, Ming-Qiang & Geng, Zeng-Chao, 2021. "Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application," Energy, Elsevier, vol. 215(PB).
    2. Fang, Jing & Xiong, Chuhao & Feng, Mingqian & Wu, Ye & Liu, Dong, 2022. "Utilization of carbon-based energy as raw material instead of fuel with low CO2 emissions: Energy analyses and process integration of chemical looping ammonia generation," Applied Energy, Elsevier, vol. 312(C).
    3. Xiong, Chuhao & Wu, Ye & Feng, Mingqian & Fang, Jing & Liu, Dong & Shen, Laihong & Argyle, Morris D. & A. M. Gasem, Khaled & Fan, Maohong, 2022. "High thermal stability Si-Al based N-carrier for efficient and stable chemical looping ammonia generation," Applied Energy, Elsevier, vol. 323(C).
    4. Wang, Xiaoyu & Su, Mingze & Zhao, Haibo, 2021. "Process design and exergy cost analysis of a chemical looping ammonia generation system using AlN/Al2O3 as a nitrogen carrier," Energy, Elsevier, vol. 230(C).
    5. Jong-Hoon Kim & Tian-Yi Dai & Mihyun Yang & Jeong-Min Seo & Jae Seong Lee & Do Hyung Kweon & Xing-You Lang & Kyuwook Ihm & Tae Joo Shin & Gao-Feng Han & Qing Jiang & Jong-Beom Baek, 2023. "Achieving volatile potassium promoted ammonia synthesis via mechanochemistry," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    2. Jikai Sun & Rui Tu & Yuchun Xu & Hongyan Yang & Tie Yu & Dong Zhai & Xiuqin Ci & Weiqiao Deng, 2024. "Machine learning aided design of single-atom alloy catalysts for methane cracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Liu, Hongwei & Wang, Yongzhen & Lv, Liang & Liu, Xiao & Wang, Ziqi & Liu, Jun, 2023. "Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors," Energy, Elsevier, vol. 269(C).
    4. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Sun, Guo-Tao & Hu, Li-Le & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2021. "Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications," Renewable Energy, Elsevier, vol. 177(C), pages 82-94.
    5. Ziming Wang & Xuanli Dong & Xiao-Fen Li & Yawei Feng & Shunning Li & Wei Tang & Zhong Lin Wang, 2024. "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Ozpinar, Pelin & Dogan, Ceren & Demiral, Hakan & Morali, Ugur & Erol, Salim & Samdan, Canan & Yildiz, Derya & Demiral, Ilknur, 2022. "Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis," Renewable Energy, Elsevier, vol. 189(C), pages 535-548.
    7. Fang, Jing & Xiong, Chuhao & Feng, Mingqian & Wu, Ye & Liu, Dong, 2022. "Utilization of carbon-based energy as raw material instead of fuel with low CO2 emissions: Energy analyses and process integration of chemical looping ammonia generation," Applied Energy, Elsevier, vol. 312(C).
    8. Lv, Chunfei & Ma, Xiaojun & Guo, Ranran & Li, Dongna & Hua, Xuewen & Jiang, Tianyu & Li, Hongpeng & Liu, Yang, 2023. "Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor," Energy, Elsevier, vol. 270(C).
    9. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    10. Sakthivel, Mani & Ramki, Settu & Chen, Shen-Ming & Ho, Kuo-Chuan, 2022. "Defect rich Se–CoWS2 as anode and banana flower skin-derived activated carbon channels with interconnected porous structure as cathode materials for asymmetric supercapacitor application," Energy, Elsevier, vol. 257(C).
    11. Jiang, Zhuosheng & Zhai, Shengli & Huang, Mingzhi & Songsiriritthigul, Prayoon & Aung, Su Htike & Oo, Than Zaw & Luo, Min & Chen, Fuming, 2021. "3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics," Energy, Elsevier, vol. 227(C).
    12. Do-Gun Kim & Shinnee Boldbaatar & Seok-Oh Ko, 2022. "Enhanced Adsorption of Tetracycline by Thermal Modification of Coconut Shell-Based Activated Carbon," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
    13. Xiong, Chuhao & Wu, Ye & Feng, Mingqian & Fang, Jing & Liu, Dong & Shen, Laihong & Argyle, Morris D. & A. M. Gasem, Khaled & Fan, Maohong, 2022. "High thermal stability Si-Al based N-carrier for efficient and stable chemical looping ammonia generation," Applied Energy, Elsevier, vol. 323(C).
    14. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    15. Sun, Bingkang & Zhang, Xiaoyun & Fan, Xing & Wang, Ruiyu & Bai, Hongcun & Wei, Xianyong, 2022. "Interface modification based on MnO2@N-doped activated carbon composites for flexible solid-state asymmetric supercapacitors," Energy, Elsevier, vol. 249(C).
    16. Ponce, M. Federico & Mamani, Arminda & Jerez, Florencia & Castilla, Josué & Ramos, Pamela B. & Acosta, Gerardo G. & Sardella, M. Fabiana & Bavio, Marcela A., 2022. "Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor," Energy, Elsevier, vol. 260(C).
    17. Bao, Qi & Zhang, Min & Li, Ju & Wang, Xiuzhang & Zhu, Mingqiang & Sun, Guotao, 2024. "The optimal micro- and meso-pores oriented development of Eucommia ulmoides oliver wood derived activated carbons for capacitive performance," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123016051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.