IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v169y2016icp652-662.html
   My bibliography  Save this article

Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment

Author

Listed:
  • Monlau, F.
  • Francavilla, M.
  • Sambusiti, C.
  • Antoniou, N.
  • Solhy, A.
  • Libutti, A.
  • Zabaniotou, A.
  • Barakat, A.
  • Monteleone, M.

Abstract

The integration of different technologies acts as a leverage in boosting “circular economy” and improving resource use efficiency. In this respect, the coupling of anaerobic digestion with pyrolysis was the focus of this work. Solid-digestate obtained from anaerobic digestion was addressed to supply pyrolysis thus increasing the net energy gains and obtaining “biochar” (called “pyrochar” in our case) to be used as soil amendment alternatively to solid-digestate. The current interest on biochar is linked to its long-term soil carbon sequestration, thus contributing to global warming mitigation.

Suggested Citation

  • Monlau, F. & Francavilla, M. & Sambusiti, C. & Antoniou, N. & Solhy, A. & Libutti, A. & Zabaniotou, A. & Barakat, A. & Monteleone, M., 2016. "Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment," Applied Energy, Elsevier, vol. 169(C), pages 652-662.
  • Handle: RePEc:eee:appene:v:169:y:2016:i:c:p:652-662
    DOI: 10.1016/j.apenergy.2016.02.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916302240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.02.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Schoene, Robin P. & Snyder, Seth W., 2015. "Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal," Applied Energy, Elsevier, vol. 158(C), pages 300-309.
    2. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    3. Hammond, Geoffrey P. & Seth, Shashank M., 2013. "Carbon and environmental footprinting of global biofuel production," Applied Energy, Elsevier, vol. 112(C), pages 547-559.
    4. Veronica Arthurson, 2009. "Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback," Energies, MDPI, vol. 2(2), pages 1-17, April.
    5. Cranston, G.R. & Hammond, G.P., 2010. "North and south: Regional footprints on the transition pathway towards a low carbon, global economy," Applied Energy, Elsevier, vol. 87(9), pages 2945-2951, September.
    6. Kauffman, Nathan & Dumortier, Jerome & Hayes, Dermot J. & Brown, Robert C. & Laird, David, 2014. "Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity," ISU General Staff Papers 201404010700001488, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    2. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Liu, Hongbo & Wang, Xingkang & Fang, Yueying & Lai, Wenjia & Xu, Suyun & Lichtfouse, Eric, 2022. "Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar," Renewable Energy, Elsevier, vol. 188(C), pages 465-475.
    5. Hossain, Abul Kalam & Sharma, Vikas & Serrano, Clara & Krishnasamy, Anand & Ganesh, Duraisamy, 2024. "Production of biofuel from AD digestate waste and their combustion characteristics in a low-speed diesel engine," Renewable Energy, Elsevier, vol. 222(C).
    6. Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
    7. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    8. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Chen, Minzi & Zhang, Shuping & Su, Yinhai & Niu, Xin & Zhu, Shuguang & Liu, Xinzhi, 2022. "Catalytic co-pyrolysis of food waste digestate and corn husk with CaO catalyst for upgrading bio-oil," Renewable Energy, Elsevier, vol. 186(C), pages 105-114.
    11. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    13. Corton, J. & Donnison, I.S. & Patel, M. & Bühle, L. & Hodgson, E. & Wachendorf, M. & Bridgwater, A. & Allison, G. & Fraser, M.D., 2016. "Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes," Applied Energy, Elsevier, vol. 177(C), pages 852-862.
    14. Ogorure, O.J. & Heberle, F. & Brüggemann, D., 2024. "Thermo-economic analysis and multi-criteria optimization of an integrated biomass-to-energy power plant," Renewable Energy, Elsevier, vol. 224(C).
    15. Lü, Fan & Hua, Zhang & Shao, Liming & He, Pinjing, 2018. "Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances," Renewable Energy, Elsevier, vol. 124(C), pages 202-211.
    16. Chen, Renjie & Yu, Xiaoqing & Dong, Bin & Dai, Xiaohu, 2020. "Sludge-to-energy approaches based on pathways that couple pyrolysis with anaerobic digestion (thermal hydrolysis pre/post-treatment): Energy efficiency assessment and pyrolysis kinetics analysis," Energy, Elsevier, vol. 190(C).
    17. Chojnacka, K. & Gorazda, K. & Witek-Krowiak, A. & Moustakas, K., 2019. "Recovery of fertilizer nutrients from materials - Contradictions, mistakes and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 485-498.
    18. Wang, Shule & Yang, Hanmin & Shi, Ziyi & Zaini, Ilman Nuran & Wen, Yuming & Jiang, Jianchun & Jönsson, Pär Göran & Yang, Weihong, 2022. "Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept," Energy, Elsevier, vol. 252(C).
    19. Deng, Lei & Torres-Rojas, Dorisel & Burford, Michael & Whitlow, Thomas H. & Lehmann, Johannes & Fisher, Elizabeth M., 2018. "Fuel sensitivity of biomass cookstove performance," Applied Energy, Elsevier, vol. 215(C), pages 13-20.
    20. Zhou, Hewen & Yang, Qing & Gul, Eid & Shi, Mengmeng & Li, Jiashuo & Yang, Minjiao & Yang, Haiping & Chen, Bin & Zhao, Haibo & Yan, Yunjun & Erdoğan, Güneş & Bartocci, Pietro & Fantozzi, Francesco, 2021. "Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis," Renewable Energy, Elsevier, vol. 176(C), pages 565-578.
    21. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    22. Zhang, Yangyang & Li, Huan & Li, Debin, 2021. "Maximize methane recovery from sludge anaerobic digestion by combining an optimal wet air oxidation process," Renewable Energy, Elsevier, vol. 179(C), pages 359-369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    2. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    4. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Lü, Fan & Liu, Yang & Shao, Liming & He, Pinjing, 2019. "Powdered biochar doubled microbial growth in anaerobic digestion of oil," Applied Energy, Elsevier, vol. 247(C), pages 605-614.
    6. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Lü, Fan & Hua, Zhang & Shao, Liming & He, Pinjing, 2018. "Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances," Renewable Energy, Elsevier, vol. 124(C), pages 202-211.
    8. Hemal Chowdhury & Tamal Chowdhury & Ayyoob Sharifi & Richard Corkish & Sadiq M. Sait, 2022. "Role of Biogas in Achieving Sustainable Development Goals in Rohingya Refugee Camps in Bangladesh," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    9. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    10. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    11. Zhou, Yixuan & Su, Xianbo & Zhao, Weizhong & Wang, Lufei & Fu, Haijiao, 2023. "Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion," Renewable Energy, Elsevier, vol. 219(P2).
    12. Kerstin Nielsen & Christina-Luise Roß & Marieke Hoffmann & Andreas Muskolus & Frank Ellmer & Timo Kautz, 2020. "The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity," Agriculture, MDPI, vol. 10(6), pages 1-20, June.
    13. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    15. Hammond, Geoffrey P. & Mansell, Ross V.M., 2018. "A comparative thermodynamic evaluation of bioethanol processing from wheat straw," Applied Energy, Elsevier, vol. 224(C), pages 136-146.
    16. Federico Battista & Nicola Frison & David Bolzonella, 2019. "Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications," Energies, MDPI, vol. 12(17), pages 1-13, August.
    17. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Reza Farrahi Moghaddam & Fereydoun Farrahi Moghaddam & Mohamed Cheriet, 2014. "IIGHGINT: A generalization to the modified GHG intensity universal indicator toward a production/consumption insensitive border carbon tax," Papers 1401.0301, arXiv.org, revised Apr 2014.
    19. Suraj Adebayo Opatokun & Ana Lopez-Sabiron & German Ferreira & Vladimir Strezov, 2017. "Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    20. Chen, Miao & Liu, Shujun & Yuan, Xufeng & Li, Qing X. & Wang, Fengzhong & Xin, Fengjiao & Wen, Boting, 2021. "Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar," Renewable Energy, Elsevier, vol. 163(C), pages 357-367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:169:y:2016:i:c:p:652-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.