IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017986.html
   My bibliography  Save this article

Predicting hydrogen production from co-gasification of biomass and plastics using tree based machine learning algorithms

Author

Listed:
  • Devasahayam, Sheila
  • Albijanic, Boris

Abstract

Hydrogen production from co-gasification of biomass and plastics are predicted using Machine Learning Algorithms, e.g., Decision tree and Ensemble methods. Independent variables are particle sizes of biomass and plastics, feedstock ratio and temperatures. The dependent variable is Hydrogen production. Model and prediction performances were evaluated/validated using model parameters. The relative importance scores for independent variables are RSS particle size > HDPE particle size > Temperature > Percent plastics. Size dependence of Hydrogen production indicated a surface-controlled reaction. Temperatures between 500 °C and 900 °C have less impact on H2 production compared to the size. Predictions were carried out using Train-test split, Cross-validation, and GridsearchCV model on the data unseen. Gradient Boosting performed the best.

Suggested Citation

  • Devasahayam, Sheila & Albijanic, Boris, 2024. "Predicting hydrogen production from co-gasification of biomass and plastics using tree based machine learning algorithms," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017986
    DOI: 10.1016/j.renene.2023.119883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Ren-Xuan & Wu, Shan-Luo & Chuang, Kui-Hao & Wey, Ming-Yen, 2020. "Co-production of carbon nanotubes and hydrogen from waste plastic gasification in a two-stage fluidized catalytic bed," Renewable Energy, Elsevier, vol. 159(C), pages 10-22.
    2. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    2. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    3. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    4. Peter N. Ciesielski & M. Brennan Pecha & Vivek S. Bharadwaj & Calvin Mukarakate & G. Jeremy Leong & Branden Kappes & Michael F. Crowley & Seonah Kim & Thomas D. Foust & Mark R. Nimlos, 2018. "Advancing catalytic fast pyrolysis through integrated multiscale modeling and experimentation: Challenges, progress, and perspectives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    5. Dong, Shengfei & Liu, Ziyu & Yang, Xiaoyi, 2024. "Exploration of hydrothermal liquefaction of multiple algae to improve bio-crude quality and carbohydrate utilization," Applied Energy, Elsevier, vol. 361(C).
    6. Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Liu, Nian & He, Xiao & Yang, Xinyi & Nzihou, Ange & Chen, Hanping, 2019. "Solar pyrolysis of cotton stalk in molten salt for bio-fuel production," Energy, Elsevier, vol. 179(C), pages 1124-1132.
    7. Huang, Dexin & Song, Gongxiang & Li, Ruochen & Han, Hengda & He, Limo & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Evolution mechanisms of bio-oil from conventional and nitrogen-rich biomass during photo-thermal pyrolysis," Energy, Elsevier, vol. 282(C).
    8. Zhenghui Xu & Xiang Xiao & Ping Fang & Lyumeng Ye & Jianhang Huang & Haiwen Wu & Zijun Tang & Dongyao Chen, 2020. "Comparison of Combustion and Pyrolysis Behavior of the Peanut Shells in Air and N 2 : Kinetics, Thermodynamics and Gas Emissions," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    9. Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
    10. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Kim, Heeyoon & Yu, Seunghan & Ra, Howon & Yoon, Sungmin & Ryu, Changkook, 2023. "Prediction of pyrolysis kinetics for torrefied biomass based on raw biomass properties and torrefaction severity," Energy, Elsevier, vol. 278(C).
    12. Li, Longzhi & Cai, Dongqiang & Zhang, Lianjie & Zhang, Yue & Zhao, Zhiyang & Zhang, Zhonglei & Sun, Jifu & Tan, Yongdong & Zou, Guifu, 2023. "Synergistic effects during pyrolysis of binary mixtures of biomass components using microwave-assisted heating coupled with iron base tip-metal," Renewable Energy, Elsevier, vol. 203(C), pages 312-322.
    13. Bai, Xiaopeng & Wang, Guanghui & Zhu, Zheng & Cai, Chen & Wang, Zhiqin & Wang, Decheng, 2020. "Investigation of improving the yields and qualities of pyrolysis products with combination rod-milled and torrefaction pretreatment," Renewable Energy, Elsevier, vol. 151(C), pages 446-453.
    14. Francesco Miccio, 2022. "Thermoelectric Micro-Scale Generation by Carbonaceous Devices," Energies, MDPI, vol. 15(21), pages 1-10, October.
    15. Wen, Shaoting & Yan, Youping & Liu, Jingyong & Buyukada, Musa & Evrendilek, Fatih, 2019. "Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 141(C), pages 814-827.
    16. Mumbach, Guilherme Davi & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Domenico, Michele Di & Arias, Santiago & Pacheco, Jose Geraldo A. & Marangoni, Cintia & Machado, Ricardo Anton, 2022. "Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Min-Hao Yuan & Chia-Chi Chang & Tsung-Chi Hsu & Je-Lueng Shie & Yi-Hung Chen & Ching-Yuan Chang & Cheng-Fang Lin & Chang-Ping Yu & Chao-Hsiung Wu & Manh Van Do & Far-Ching Lin & Duu-Jong Lee & Bo-Lian, 2021. "A Technical Analysis of Solid Recovered Fuel from Torrefied Jatropha Seed Residue via a Two-Stage Mechanical Screw Press and Solvent Extraction Process," Energies, MDPI, vol. 14(23), pages 1-13, November.
    18. González Martínez, María & Dupont, Capucine & da Silva Perez, Denilson & Mortha, Gérard & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: Experimental thermogravimetric solid mass loss," Energy, Elsevier, vol. 205(C).
    19. Wang, Shuxiao & Zhang, Yuyuan & Shan, Rui & Gu, Jing & Yuan, Haoran & Chen, Yong, 2022. "Steam reforming of biomass tar model compound over two waste char-based Ni catalysts for syngas production," Energy, Elsevier, vol. 246(C).
    20. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.