IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8105-d959013.html
   My bibliography  Save this article

Thermoelectric Micro-Scale Generation by Carbonaceous Devices

Author

Listed:
  • Francesco Miccio

    (Istituto di Scienza e Tecnologia dei Materiali Ceramici CNR, via Granarolo 64, 48018 Faenza, Italy)

Abstract

The paper reports on research focused on the use of largely available carbonaceous materials, such as graphite, carbon black and chars, as thermoelectric materials for micro-generation at high temperature. The key feature is the possibility to ignite the thermoelectric device to self-sustain electric generation. The results of the tests performed with such materials, under both cold and hot conditions, showed that a significant change of the electromotive force, with absolute increase up to three orders of magnitude, occurred under hot conditions with flame irradiation, achieving measured values of electromotive force up to 55 mV, in the best case. Monoliths based on biomass chars and covered with a layer of gunpowder gave rise to similar variation of the Seebeck coefficient, as the case of the flame exposed samples. This result confirms the basic idea of the investigation and the possibility of generating an electrical peak in a self-sufficient combustion thermoelectric device with power up to 1.0 W. A theoretical assessment has been proposed to provide an interpretation of the observed phenomenology, which is related to the non-linear dependence of the material properties on temperature, in particular the Seebeck coefficient and thermal conductivity.

Suggested Citation

  • Francesco Miccio, 2022. "Thermoelectric Micro-Scale Generation by Carbonaceous Devices," Energies, MDPI, vol. 15(21), pages 1-10, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8105-:d:959013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merotto, L. & Fanciulli, C. & Dondè, R. & De Iuliis, S., 2016. "Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor," Applied Energy, Elsevier, vol. 162(C), pages 346-353.
    2. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    2. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    3. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    4. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    5. Kluska, Jacek & Turzyński, Tomasz & Ochnio, Mateusz & Kardaś, Dariusz, 2020. "Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets," Renewable Energy, Elsevier, vol. 149(C), pages 1246-1253.
    6. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    8. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
    9. Devasahayam, Sheila & Albijanic, Boris, 2024. "Predicting hydrogen production from co-gasification of biomass and plastics using tree based machine learning algorithms," Renewable Energy, Elsevier, vol. 222(C).
    10. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    11. Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
    12. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    13. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    14. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    15. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    16. Jiang, Xuguang & Chen, Dandan & Ma, Zengyi & Yan, Jianhua, 2017. "Models for the combustion of single solid fuel particles in fluidized beds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 410-431.
    17. Peter N. Ciesielski & M. Brennan Pecha & Vivek S. Bharadwaj & Calvin Mukarakate & G. Jeremy Leong & Branden Kappes & Michael F. Crowley & Seonah Kim & Thomas D. Foust & Mark R. Nimlos, 2018. "Advancing catalytic fast pyrolysis through integrated multiscale modeling and experimentation: Challenges, progress, and perspectives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    18. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    19. Dong, Shengfei & Liu, Ziyu & Yang, Xiaoyi, 2024. "Exploration of hydrothermal liquefaction of multiple algae to improve bio-crude quality and carbohydrate utilization," Applied Energy, Elsevier, vol. 361(C).
    20. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8105-:d:959013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.