Author
Listed:
- Ukwuoma, Chiagoziem C.
- Cai, Dongsheng
- Ukwuoma, Chibueze D.
- Chukwuemeka, Mmesoma P.
- Ayeni, Blessing O.
- Ukwuoma, Chidera O.
- Adeyi, Odeh Victor
- Huang, Qi
Abstract
To meet the difficulties of the current energy environment, hydrogen has enormous potential as a clean and sustainable energy source. Utilizing hydrogen's potential requires accurate hydrogen production prediction. Due to its capacity to identify intricate patterns in data, Machine learning alongside deep learning models has attracted considerable interest from a variety of industries, including the energy industry. Although these models yield an acceptable performance, there is still a need to improve their prediction results. Also, they are inherently black boxes, which makes it difficult to comprehend and interpret their predictions, particularly in important sectors like hydrogen generation. Sequel to the above, a sequential gated recurrent and self-attention network is proposed in this study to enhance hydrogen production prediction. The framework captures both sequential dependencies and contextual information enabling the model to effectively learn and represent temporal patterns in hydrogen production prediction. The biomass gasification dataset is used for the experiment including the Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Coefficient of Determination (R2), Mean Squared Logarithmic Error (MSLE) and Root Mean Squared Logarithmic Error (RMSLE) evaluation metrics. The proposed model recorded an optimal performance with an MAE of 0.102, MSE of 0.027, RMSE of 0.160, R2 of 0.999, MSLE of 0.001, and RMSLE of 0.030 based on K-cross validation. Among the input features, the percentage of plastics in the mixture(wt%) and RSS Particle Size(mm) are identified to be the most influential features in the proposed model prediction as identified by Shapley Additive Explanation (SHAP), Local Interpretable Model-Agnostic Explanations (LIME) and Feature importance plot. With 99.99 % of the data points for H2 production found within the range of reliability, the model demonstrates robust predictive capability with the majority of observations exerting minimal leverage (0 ≤ u ≤ [leverage threshold]) and limited influence (0 ≤ H ≤ [cooks' threshold]) on the predictive outcome using the modified William plot. Furthermore, various visualization approaches like Matthews correlation coefficient and Tarloy charts were adapted for the result explanations. The proposed model results were compared with state-of-the-art models exploring the significance of the proposed model in providing insights into the underlying mechanisms and factors influencing hydrogen production processes hence improving human understanding of the relationships between input factors and hydrogen production outputs as well as bridging the gap between predicted accuracy and interpretability.
Suggested Citation
Ukwuoma, Chiagoziem C. & Cai, Dongsheng & Ukwuoma, Chibueze D. & Chukwuemeka, Mmesoma P. & Ayeni, Blessing O. & Ukwuoma, Chidera O. & Adeyi, Odeh Victor & Huang, Qi, 2025.
"Sequential gated recurrent and self attention explainable deep learning model for predicting hydrogen production: Implications and applicability,"
Applied Energy, Elsevier, vol. 378(PA).
Handle:
RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022347
DOI: 10.1016/j.apenergy.2024.124851
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022347. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.