IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics096014812301724x.html
   My bibliography  Save this article

The utilisation of thermally treated poultry farm waste for energy recovery and soil application

Author

Listed:
  • Šantl, Neža
  • Stergar, Janja
  • Bozicko, Matevz
  • Goričanec, Darko
  • Urbancl, Danijela
  • Petrovič, Aleksandra

Abstract

The thermal treatment was analysed of poultry farm waste, excrement and litter, and their mixture. Two thermal treatment methods were chosen: Torrefaction at 300 °C and hydrothermal carbonisation (HTC) at 250 °C. The characterisation of raw materials and solid products was performed by proximate and ultimate analysis, and analysis of the high heating value. Thermogravimetric analysis (TGA) was performed of the combustion of raw materials and solid products in an air atmosphere. The kinetic and thermodynamic parameters were determined according to the Flynn–Wall–Ozawa (FWO) kinetic model. The contents of total organic carbon, chemical oxygen demand, total nitrogen and total phosphorus, as well as the content of total phenols, were determined in the process fluids. In addition, a germination test was performed with garden cress.

Suggested Citation

  • Šantl, Neža & Stergar, Janja & Bozicko, Matevz & Goričanec, Darko & Urbancl, Danijela & Petrovič, Aleksandra, 2024. "The utilisation of thermally treated poultry farm waste for energy recovery and soil application," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s096014812301724x
    DOI: 10.1016/j.renene.2023.119809
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301724X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Shimin & Li, Xianglan & Fan, Juan & Chang, Jie, 2013. "Hydrothermal conversion of lignin: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 546-558.
    2. Marin-Batista, J.D. & Villamil, J.A. & Qaramaleki, S.V. & Coronella, C.J. & Mohedano, A.F. & Rubia, M.A. de la, 2020. "Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion," Renewable Energy, Elsevier, vol. 160(C), pages 623-632.
    3. Gan, Yong Yang & Ong, Hwai Chyuan & Ling, Tau Chuan & Chen, Wei-Hsin & Chong, Cheng Tung, 2019. "Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production," Energy, Elsevier, vol. 170(C), pages 367-374.
    4. Ivanovski, Maja & Goricanec, Darko & Krope, Jurij & Urbancl, Danijela, 2022. "Torrefaction pretreatment of lignocellulosic biomass for sustainable solid biofuel production," Energy, Elsevier, vol. 240(C).
    5. Santos Dalólio, Felipe & da Silva, Jadir Nogueira & Carneiro de Oliveira, Angélica Cássia & Ferreira Tinôco, Ilda de Fátima & Christiam Barbosa, Rúben & Resende, Michael de Oliveira & Teixeira Albino,, 2017. "Poultry litter as biomass energy: A review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 941-949.
    6. Jeeban Poudel & Sujeeta Karki & Sea Cheon Oh, 2018. "Valorization of Waste Wood as a Solid Fuel by Torrefaction," Energies, MDPI, vol. 11(7), pages 1-10, June.
    7. Kiran R. Parmar & Andrew B. Ross, 2019. "Integration of Hydrothermal Carbonisation with Anaerobic Digestion; Opportunities for Valorisation of Digestate," Energies, MDPI, vol. 12(9), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    2. Zhang, Deli & Sun, Zhijing & Fu, Hongyue & Liu, Zhenfei & Wang, Fang & Zeng, Jianfei & Yi, Weiming, 2024. "Upgrading of cow manure by hydrothermal carbonization: Evaluation of fuel properties, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 225(C).
    3. Maja Ivanovski & Aleksandra Petrovič & Darko Goričanec & Danijela Urbancl & Marjana Simonič, 2023. "Exploring the Properties of the Torrefaction Process and Its Prospective in Treating Lignocellulosic Material," Energies, MDPI, vol. 16(18), pages 1-20, September.
    4. Aaron E. Brown & James M. Hammerton & Miller Alonso Camargo-Valero & Andrew B. Ross, 2022. "Integration of Hydrothermal Carbonisation and Anaerobic Digestion for the Energy Valorisation of Grass," Energies, MDPI, vol. 15(10), pages 1-21, May.
    5. Izabella Maj & Sylwester Kalisz & Szymon Ciukaj, 2022. "Properties of Animal-Origin Ash—A Valuable Material for Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    6. Maja Ivanovski & Darko Goričanec & Danijela Urbancl, 2023. "The Evaluation of Torrefaction Efficiency for Lignocellulosic Materials Combined with Mixed Solid Wastes," Energies, MDPI, vol. 16(9), pages 1-15, April.
    7. Matteo Borella & Alessandro A. Casazza & Gabriella Garbarino & Paola Riani & Guido Busca, 2022. "A Study of the Pyrolysis Products of Kraft Lignin," Energies, MDPI, vol. 15(3), pages 1-15, January.
    8. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
    9. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).
    10. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    11. Wei, Rufei & Feng, Shanghuan & Long, Hongming & Li, Jiaxin & Yuan, Zhongshun & Cang, Daqiang & Xu, Chunbao (Charles), 2017. "Coupled biomass (lignin) gasification and iron ore reduction: A novel approach for biomass conversion and application," Energy, Elsevier, vol. 140(P1), pages 406-414.
    12. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    13. Xiaodan Liu & Xuping Feng & Lingxia Huang & Yong He, 2020. "Rapid Determination of Wood and Rice Husk Pellets’ Proximate Analysis and Heating Value," Energies, MDPI, vol. 13(14), pages 1-13, July.
    14. Dessbesell, Luana & Paleologou, Michael & Leitch, Mathew & Pulkki, Reino & Xu, Chunbao (Charles), 2020. "Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    15. Tianjiao Cheng & Andante Hadi Pandyaswargo & Hiroshi Onoda, 2020. "Comparison of Torrefaction and Hydrothermal Treatment as Pretreatment Technologies for Rice Husks," Energies, MDPI, vol. 13(19), pages 1-20, October.
    16. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    17. Bai, Jing & Li, Lefei & Chen, Zhiyong & Chang, Chun & Pang, Shusheng & Li, Pan, 2023. "Study on the optimization of hydrothermal liquefaction performance of tobacco stem and the high value utilization of catalytic products," Energy, Elsevier, vol. 281(C).
    18. Magdziarz, Aneta & Mlonka-Mędrala, Agata & Sieradzka, Małgorzata & Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy A. & Brem, Gerrit & Niedzwiecki, Łukasz & Pawlak-Kruczek, Halina, 2021. "Multiphase analysis of hydrochars obtained by anaerobic digestion of municipal solid waste organic fraction," Renewable Energy, Elsevier, vol. 175(C), pages 108-118.
    19. Kyoung S. Ro & Michael A. Jackson & Ariel A. Szogi & David L. Compton & Bryan R. Moser & Nicole D. Berge, 2022. "Sub- and Near-Critical Hydrothermal Carbonization of Animal Manures," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    20. Jagadale, Manisha & Gangil, Sandip & Jadhav, Mahesh, 2023. "Enhancing fuel characteristics of jute sticks (Corchorus Sp.) using fixed bed torrefaction process," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s096014812301724x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.